cho n lẻ chứng minh A= \(n^{2014}\)+ 1 ko phải số chính phương
Chứng minh rằng A = 1 + 3 + 5 + 7 ......... + n là số chính phương ( n lẻ )
Chứng minh rằng : A=1+3+5+7+...+n là số chính phương với n lẻ
Bạn ghi thế khó hiểu quá mk sửa lại nhé.
\(A=1+3+5+7+...+\left(2n-1\right)\)
\(\Rightarrow\) Số số hạng của A là:
\(\frac{\left(2n-1\right)-1}{2}+1=n\) ( số hạng )
\(\Rightarrow1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=n^2\) là một số chính phương .
Vậy \(A=1+3+5+7+...+\left(2n-1\right)\) với mọi n thuộc N* luôn là số chính phương.
Cho A =405^n + 2^405 + m^2 (m thuộc N). chứng minh A không phải số chính phương.
Chứng minh n! +2003 không phải là số chính phương với n thuộc N
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
Cho a,b là 2 số chính phương lẻ liên tiếp . Chứng minh rằng : (a - 1)(b - 1) chia hết cho 192
Cho A=3+32+33+......+32004
a)Chứng minh A chia hết cho 130
b)A có phải là số chính phương ko? Vì sao?
Cho n là tích của tất cả các số nguyên tố không vượt quá 1 số cho trước nào đó. Chứng minh rằng (n - 1) và (n + 1) đều ko thể là số chính phương.
Ta có: n = 2.3.5.7.11.13. ...
Dễ thấy n chia hết cho 2 và không chia hết cho 4.
-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.
Vì n chẵn nên n+1 lẻ mà n+1= a2 nên a lẻ, giả sử a=2k+1, khi đó:
n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.
Vậy n+1 không chính phương.
-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.
Vậy n-1 không chính phương
(Hình như bài này của lớp 8 nha)
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.