Những câu hỏi liên quan
ND
Xem chi tiết
LT
Xem chi tiết
MT
27 tháng 5 2015 lúc 10:35

mjk ko bik giải câu a có dc  ko

Bình luận (0)
MT
27 tháng 5 2015 lúc 11:15

b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)

Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)

=>13 chia hết cho x-3

=>x-3 \(\in\)Ư(13)={-1;1;-13;13}

x-3=-1           x-3=1            x-3 =-13           x-3=13

x  =-1+3        x   =1+3        x    =-13+3        x   =13+3

x=2               x  =4              x=-10              x=16

Vậy x=2;4;-10;16 thì A thuộc Z

c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)

Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)

=>-5 chia hết cho 3x+2

=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}

3x+2=-1             3x+2=1              3x+2=-5           3x+2=5

3x    =-3             3x    =-1             3x   =-7            3x    =3

x       =-1             x     =-1/3            x   =-7/3          x     =1

Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z

d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)

Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)

=> 4 chia hết cho 5x-2

=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}

5x-2=-1           5x-2=1             5x-2=2          5x-2=-2           5x-2=4            5x-2=-4

bạn tự giải tìm x như các bài trên nhé

d) bạn ghi đề mjk ko hjeu

e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)

Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)

=>17 chia hết cho x-3

=>x-3 \(\in\)Ư(17)={1;-1;17;-17}

x-3=1       x-3=-1            x-3=17           x-3=-17

bạn tự giải tìm x nhé

điều cuối cùng cho mjk ****

Bình luận (0)
CL
Xem chi tiết
DX
15 tháng 1 2021 lúc 13:46

a. (x + 2) * (y - 5) = -7

<=> (y - 5) = -\(\dfrac{7}{x+2}\)

x ∈ Z => 7 chia hết cho (x + 2)

=> x = 5

<=> y -5 = -1

y = -1 + 5

y = 4

Vậy x = 5 và y = 4 

b. (x-1) * (xy-3) = -5

<=> (xy-3) = -\(\dfrac{5}{x-1}\)

x ∈ Z => 5 chia hết cho x-1

=>  x =6 ; -4; 2

TH1 : x = 6 => 6y-3

<=> 6y - 3 = -\(\dfrac{5}{6-1}\)

=> 6y - 3 = -1

6y = -1+3

6y = 2

y = 6:2

y = 3

TH2 : x = -4

<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)

<=> -4y - 3 = 1

-4y             =  1 + 3 

-4y             = 4

y                 = 4 : -4

y                 = -1

TH3 : x = 2

<=> 2y - 3 = -\(\dfrac{5}{2-1}\)

<=> 2y - 3 = -5 

2y             = -5 + 3

2y             = -2

y               = -2 : 2

y               = -1

Vậy x =2 và y = -1 hoặc x = -4 và y = -1

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
ND
5 tháng 11 2015 lúc 17:39

=> x2y - xy -5 x =0

=> x(xy-y-5) = 0

=> x=0 

Hoặc xy-y -5 =0 => y(x-1)=5

=> y=1; x-1 =5 => x =6

=>y=-1 ; x- 1 =-5 => x =-4

=> y=-5 ; x-1 =-1 => x =0

=> y=5 => x -1 =1 => x=2

Vậy (x;y) =(0; mọi y); (6;1);(-4;-1);(2;5)

Bình luận (0)
CB
Xem chi tiết
H24
23 tháng 1 2017 lúc 21:18

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

Bình luận (0)
H24
23 tháng 1 2017 lúc 21:29

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

Bình luận (0)