tính:\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2012.2014}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2012.2014}+\frac{4}{2014.2016}\)
Tính
giúp minh nha!!
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2.\frac{1007}{2016}\)
\(=\frac{2007}{1008}\)
giải:
4/2.4+4/4.6+4/6.8+...+4/2012.2014+4/2014.2016
=2.(2/2.4+2/4.6+2/6.8+...+2/2012.2014+2/2014.2016
=2.(1/2-1/4+1,4-1/6+1/6-1/8+...+1/2012-1/2014+1/2014-1/2016)
=2.(1/2-1/2016)
=2.1007/2016
=1007/1008
xong rùi đó
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2012.2014}+\frac{4}{2014.2016}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2012.2014}+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2.\frac{1007}{2016}\)
\(=\frac{1007}{1008}\)
Tính:
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2012.2014}+\frac{4}{2014.2016}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2014}-\frac{1}{2016}\)\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
a \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2012.2014}+\frac{4}{2014.2016}\)
b\(\frac{10}{99}+\)\(\frac{11}{199}-\)\(\frac{12}{299}.\)\(\frac{1}{2}-\)\(\frac{1}{3}+\)\(\frac{-1}{6}\)
mình viết nhầm=)))))
\(b,\frac{10}{99}\)+\(\frac{11}{199}\)+\(\frac{12}{299}\).\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{-1}{6}\)
\(\frac{4}{2.4}\)\(+\frac{4}{4.6}\)\(+\frac{4}{6.8}\)\(+...+\frac{4}{2012.2014}\)\(+\frac{4}{2014.2016}\)
=1/1x2+1/2x3+1/3x4+...+1/1006x1007+1/1007x1008
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/1006-1/1007+1/1007-1/1008
=1/1-1/1008
=1007/1008
~-~:33
=\(\frac{4}{2}-\frac{4}{4}+\frac{4}{4}-\frac{4}{6}+\frac{4}{6}+....+\frac{4}{2012}-\frac{4}{2014}+\frac{4}{2014}-\frac{4}{2016}\)
= \(\frac{4}{2}-\frac{4}{2016}\)
=\(\frac{1007}{504}\)
hok tốt
\(\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2014\cdot2016}\)
\(=2\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2014\cdot2016}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2\cdot\frac{1007}{2016}\)
\(=\frac{1007}{1008}\)
Tính A:
\(A=\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+....+\frac{1}{45.47}\)
Kudo Shinichi mik sẽ biết ơn ai giải cho mik nhìu nhìu
TÍNH NHANH
A=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{28.30}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\)
\(A=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{28}-\frac{1}{30}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(A=\frac{1}{2}.\frac{7}{15}\)
\(A=\frac{7}{30}\)
\(2.A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\)
\(2.A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{28}-\frac{1}{30}\)
\(2.A=\frac{1}{2}-\frac{1}{30}\)
\(2.A=\frac{7}{15}\)
\(A=\frac{7}{15}:2=\frac{7}{30}\)
Tính nhanh
\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{8.10}\)
\(A=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(2A=\frac{2}{1\times3}+\frac{2}{2\times4}+\frac{2}{3\times5}+\frac{2}{4\times6}+\frac{2}{5\times7}+\frac{2}{6\times8}+\frac{2}{7\times9}+\frac{2}{8\times10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\frac{1}{6}-\frac{1}{8}+\frac{1}{7}-\frac{1}{9}+\frac{1}{8}-\frac{1}{10}\)
\(2A=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\)
\(2A=\frac{58}{45}\)
\(A=\frac{58}{45}\div2\)
\(A=\frac{29}{45}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{10}\)
\(=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}=\frac{58}{45}\)
\(A=\frac{29}{45}\)
Tính nhanh A=\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{26.28}\)
\(2.A=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{26.28}=\frac{4-2}{2.4}+\frac{6-4}{4.6}+...+\frac{28-26}{26.28}\)
\(2.A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{26}-\frac{1}{28}=\frac{1}{2}+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{26}+\frac{1}{26}\right)-\frac{1}{28}\)
\(2.A=\frac{1}{2}-\frac{1}{28}=\frac{26}{56}=\frac{13}{28}\)=> A = \(\frac{13}{56}\)
Thực hiện phép tính :
A = \(\frac{1-3}{1.3}+\frac{2-4}{2.4}+\frac{3-5}{3.5}+..........+\frac{2012-2014}{2012.2014}-\frac{2013+2014}{2013.2014}\)
giúp mình nha