Những câu hỏi liên quan
DP
Xem chi tiết
BL
Xem chi tiết
ST
1 tháng 5 2017 lúc 21:57

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)

\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)

\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{2010}{4^{2014}}< 4\)

\(\Rightarrow9S< 4\)

\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)

Bình luận (0)
TD
1 tháng 5 2017 lúc 21:48

Ta có :

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )

Lấy ( 2 ) - ( 1 ) ta được :

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

gọi     \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )

\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\)  ( 4 )

Lấy ( 4 ) - ( 3 ) ta được :

\(3B=4-\frac{1}{4^{2013}}\)

\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)

\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)

vậy \(S< 1\)

Bình luận (0)
TA
Xem chi tiết
KS
Xem chi tiết
LD
Xem chi tiết
TC
Xem chi tiết
NN
7 tháng 4 2016 lúc 20:12

de sai roi ban oi. coi lai gium

Bình luận (0)
DP
Xem chi tiết
DK
14 tháng 5 2015 lúc 8:04

Đây là bài chứng minh chứ ko phải tính đúng ko?

Bình luận (0)
TT
Xem chi tiết
TN
14 tháng 4 2015 lúc 20:00

\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)

\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)

\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2014}\right)\)

\(A=2.2014.\frac{2013}{2014}\)

\(A=\frac{2.2014.2013}{2014}\)

\(A=2.2013\)

\(A=4026\)

Bình luận (0)
NP
4 tháng 1 2017 lúc 20:41

A=4026

Bình luận (0)
DT
3 tháng 3 2020 lúc 18:53

A+4026

Bình luận (0)
 Khách vãng lai đã xóa
DP
Xem chi tiết