B=111...11111 + 111...11111 + 666...66666 + 8
2n chữ số 1 n+1 chữ số 1 n chữ số 6
Số dưới đây có là số chính phương hay không:
A=111...11111 + 444...44444 +1
2n chữ số 1 n chữ số 4
B=111...11111 + 111...11111 + 666...66666 + 8
2n chữ số 1 n+1 chữ số 1 n chữ số 6
chứng minh rằng các số sau đây là số chính phương
C=11111....1(2n chữ số 1)+11111....1(n+1 chữ số 1)+66666...6(n chữ số 6)+8
D=44....48888...89(n chữ số 4, n-1 chữ số 8)
Cho a=11111........111(2n chữ số 1);b=444...4444(n chữ số 4)
CMR:a+b+1 là số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương
\(a+b=1111....11\left(\text{2n chữ số 1}\right)+44.....444\left(\text{n chữ số 4}\right)=111...111\left(\text{n chữ số 1}\right).\left(1000...05\left(\text{n-1 chữ số 0}\right)\right)=333.....33\left(\text{n chữ số 3}\right).3333....35\left(\text{n-1 chữ số 3}\right)=\left(333..334\left(\text{n-1 chữ số 3}\right)\right)^2-1\Rightarrow a+b+1=333...334^2\text{ là số chính phương đpcm}\)
Cho a=11111...111 (2n chữ số 1) b=22222....2222(n chữ số 2 )
CMR a-b là SỐ CHÍNH PHƯƠNG
a = 11111...111(2n chứ số 1) = \(\frac{10^{2n}-1}{9}\)
b = 22222...222(n chữ số 2) = \(\frac{2\left(10^n-1\right)}{9}\)
a - b = \(\frac{10^{2n}-1}{9}-\frac{2.10^n-2}{9}=\frac{10^{2n}-1-2.10^n+2}{9}\)
\(=\frac{10^{2n}-2.10^n+1}{9}=\frac{\left(10^n-1\right)^2}{3^2}=\left(\frac{10^n-1}{3}\right)^2\)là số chính phương
=> đpcm
Ta có :
b = 22222...22222 ( n chữ số 2 ) = 2m
a = 11111...111 ( 2n chữ số 1 ) = 10n . 11111...111 ( n chữ số ) + 11...1111 ( n chữ số )
\(=\left(9m+1\right)m+m=9m^2+2m\)
Lấy vế a trừ vế b ta được \(9m^2+2m-2m=9m^2=\left(3a\right)^2\) là SCP
=> Đpcm
Bài 1:Chứng minh các số sau là số chính phương
a) A=99...99800.....001(n chữ số 9;n chữ số 0)
b) B=1111..111222.....225(n chữ số 1; n+1chữ số 2)
c) C=11111....111 - 222...22(2n chữ số 1; n chữ số 2)
Tìm chữ số tận cùng của các số sau:
a, 4^25
b, 9^29
8. Cho A = 111...1 ( 2n chữ số 1 ); B= 111...1 (n+1 chữ số 1 ); C= 666...6 ( n chữ số 6)
a, 4^25=(4^5)^2
=.......4^2
vì tận cùng là 4 nên chu
1)Cho A=111...1(2n chữ số 1),B=111...1(n+1 chữ số 1),C=666...6(n chữ số 6)
C/m:A+B+C+8 là số chính phương
2)C/m:999...9000...025(n chữ số 9 và n chữ số 0)
999...98000...01(n chữ số 9 và n chữ số 0)
444...4888...89(n chữ số 4 và n chữ số 8)
111...1222...25(n chữ số 1 và n+1 chữ số 2)
3)Tìm số nguyên dương n để:
n^2-2006 là số chính phương
cho A=1+11+111+1111+11111.....11111(số cuối có 30 chữ số 1) nêu cách làm với
1+11+111+1111+.....+11111....111(số hạng cuối được viết bởi 30 chữ số 1) vậy a :9 =