cho x,y,m,n thuộc z thỏa mãn x+y=m+n.cm x^2+y^2+m^2+n^2 là tổng của 3 số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x, y, m, n, thuộc Z thoa mãn đẳng thức x + y = m + n . CMR S = x^2 + y^2 + m^2 + n^2 là tổng bình phương 3 số nguyên
Biết x, y, m, n thuộc Z. Thỏa mãn điều kiện :
x + y = m + n. CMR :
S = x^2 + y ^2 + m^2 + n^2 luôn bằng tổng các bình phương của 3 số nguyên
Ta có: \(x+y=m+n\Rightarrow n=x+y-m\)
\(\Rightarrow S=x^2+y^2+m^2+\left(x+y-m\right)^2\)
\(=x^2+y^2+m^2+(x^2+y^2+m^2+2xy-2mx-2my)\)
\(=x^2+y^2+m^2+(x^2+y^2+m^2+2xy-2mx-2my)\)
\(=x^2+y^2+m^2+x^2+y^2+m^2+2xy-2mx-2my\)
\(=\left(x^2+2xy+y^2\right)+\left(m^2-2mx+x^2\right)+\left(m^2-2my+y^2\right)\)
\(=\left(x+y\right)^2+\left(m-x\right)^2+\left(m-y\right)^2\)
Vì x, y, m, n \(\in\) Z nên x + y; m - x; m - y là số nguyên
Vậy S luôn bằng tổng các bình phương của 3 số nguyên
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
cho x, y, m, n là các số nguyên thỏa mãn
x+y=m+n CMR
\(S=x^2+y^2+m^2+n^2\) là tổng bình phương của 3 số nguyên
Cho 4 số nguyên thỏa x+y=m+n. Cm rằng x2+y2=m2+n2 là tổng của 3 số chính phương
:) Đề đúng là \(x^2+y^2+m^2+n^2\)là tổng của 3 số chính phương :)
Có \(x+y=m+n\)\(\Rightarrow x=m+n-y\)
Thay \(x=m+n-y\)có :
\(x^2+y^2+m^2+n^2\)
\(=\left(m+n-y\right)^2+m^2+n^2\)
\(=\left(m^2+n^2+y^2+2mn-2my-2ny\right)+m^2+n^2\)
\(=m^2+n^2+y^2+2mn-2my-2ny+m^2+n^2\)
\(=\left(m^2+n^2+2mn\right)+\left(n^2+y^2-2ny\right)+\left(m^2+y^2-2my\right)\)
\(=\left(m+n\right)^2+\left(n-y\right)^2+\left(m-y\right)^2\)
Vậy ....Cho x,y,m,n\(\in\)Z thỏa mãn: x+y=m+n. Chứng minh biểu thức \(S=x^2+y^2+m^2+n^2\) luôn là tổng bình phương của 3 số nguyên
Bạn tham khảo :
Ta có \(x+y=m+n\)
⇒ \(y=m+n-x\)
Thay vào S ta có
\(S=x^2+\left(m+n-x\right)^2+m^2+n^2\)
⇒ \(S=x^2+m^2+n^2+x^2+2mn-2mx-2nx+m^2+n^2\)
⇒ \(S=\left(x^2-2mx+m^2\right)+\left(n^2+m^2+2mn\right)+\left(n^2-2nx+x^2\right)\)
⇒ \(S=\left(x-m\right)^2+\left(n-x\right)^2+\left(n+m\right)^2\)
Mà x,y,m,n∈Z
=> S luôn là tổng bình phương của 3 số nguyên
Cho x,y thuộc N* thỏa mãn (x+y)^2 +4x+1 là số chính phương, CM x=y
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6