\(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\)
a,\(\left|x-2015\right|\)+\(\left|x-2016\right|\)+\(\left|x-2017\right|\)+\(\left|x-2018\right|\)=3
b,\(\left|x-2015\right|\)+\(\left|x-2016\right|\)+\(\left|x-2017\right|\)+\(\left|x-2018\right|\)+\(\left|x-2019\right|\)=5
Tìm x , y
\(\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}=0\)
Giúp vs ạ, em cần gấp lắm!
\(\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}=0\)
Ta thấy: \(\begin{cases}\left(x-\frac{1}{5}\right)^{2014}\ge0\\\left(y+0,4\right)^{2016}\ge0\\\left(z-3\right)^{2018}\ge0\end{cases}\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}\ge0\)
\(\Rightarrow\begin{cases}\left(x-\frac{1}{5}\right)^{2014}=0\\\left(y+0,4\right)^{2016}=0\\\left(z-3\right)^{2018}=0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}\)
lần sau viết đề cẩn thận hơn nhé
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)
Tìm x : \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|=10x\)
Dễ thấy: \(\left\{{}\begin{matrix}\left|x+2016\right|\ge0\\\left|x+2017\right|\ge0\\\left|x+2018\right|\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\forall x\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow10x\ge0\Rightarrow x\ge10\)
\(pt\Leftrightarrow\left(x+2016\right)+\left(x+2017\right)+\left(x+2018\right)=10x\)
\(\Leftrightarrow3x+6051=10x\)
\(\Leftrightarrow6051=7x\Rightarrow x=\dfrac{6051}{7}\)
Tính GTNN của biểu thức:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
Tìm các số hữu tỉ x,y,z biết: \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2016}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0+5=5\\3y=0-4=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\)
tìm GTNN
Với mọi x ta có :
\(\left|x+2018\right|=\left|-x-2018\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|x+2018\right|=\left|x+2016\right|+\left|-x-2018\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|\left(x+2016\right)+\left(-x-2018\right)\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|-2\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge2\)
Mà \(\left|x+2017\right|\ge0\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|+\left|x+2017\right|\ge2\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+2016\right)\left(-x-2018\right)\ge0\left(1\right)\\\left|x+2017\right|=0\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2016\ge0\\-x-2018\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2016\le0\\-x-2018\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2016\\-2018\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2016\\-2018\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-2016\ge x\ge-2018\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow-2016\ge x\ge-2018\left(I\right)\)
Từ \(\left(2\right)\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow GTNN\) của \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2017\right|=2\Leftrightarrow x=-2017\)
Tìm GTNN của A=\(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
tìm GTNN của \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)