Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NM
Xem chi tiết
H24
1 tháng 10 2017 lúc 19:27

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

Bình luận (0)
H24
22 tháng 2 2023 lúc 20:01

tự lực mà làm mn đừng chỉ

 

Bình luận (0)
ND
Xem chi tiết
NP
22 tháng 11 2017 lúc 21:54
Ta có: A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2) A=7×50+7^5×50+...7^1997×50 A=350+7^4×350+...7^1996×350 A=35×10+7^4×35×10+...+7^1996×35×10 A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35
Bình luận (0)
NP
22 tháng 11 2017 lúc 21:56

Ta có:

A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2)

A=7×50+7^5×50+...7^1997×50

A=350+7^4×350+...7^1996×350

A=35×10+7^4×35×10+...+7^1996×35×10

A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35

Bình luận (0)
NP
22 tháng 11 2017 lúc 21:57

Phần trước của tớ bị sai nha !

Bình luận (0)
ND
Xem chi tiết
LP
15 tháng 10 2017 lúc 12:20

\(A=7+7^3+...+7^{1995}\)

\(\Rightarrow A=\left(7+7^3\right)+...+\left(7^{1993}+7^{1995}\right)\)

\(\Rightarrow A=\left(7+7^3\right)+...+7^{1992}.\left(7+7^3\right)\)

\(\Rightarrow A=350+...+7^{1992}.350\)

\(\Rightarrow A=350.\left(1+...+7^{1992}\right)\)

\(\Rightarrow A=35.10.\left(1+...+7^{1992}\right)⋮35\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
DH
24 tháng 12 2022 lúc 16:13

85+(-35)+(-12)+(-35)=50+(-12)+(-35)=38+(-35)=3
53.42+85.53-57:54=125.16+85.125-53=125.16+85.125-125
=125.16+85.125-125.1=(16+85-1).125=100.125=12500

 

Bình luận (0)
LM
Xem chi tiết
HN
11 tháng 12 2018 lúc 13:34

vì 84 chia hết cho 3,nên 2+22+...+284 chia hết cho 3

vì 84 chia hết cho 7,nên 2+22+...+284 chia hết cho 7

Bình luận (0)
NT
17 tháng 12 2021 lúc 19:02

982 -80 nhân 7

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa
KP
Xem chi tiết
BP
15 tháng 9 2017 lúc 17:06

1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên 

Bình luận (0)
NT
Xem chi tiết
NQ
6 tháng 10 2021 lúc 7:26

câu b,c có nhầm không bạn nhỉ 

undefined

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DH
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Bình luận (0)
 Khách vãng lai đã xóa