Chứng minh rằng 9994+999 có tận cùng là 3 chữ số 0
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
A=1+7+7^2+7^3+.........+7^999
Chứng minh rằng A chia hết cho 4
Tìm chữ số tận cùng của A
A có 1000 số hạng. ghép lần lượt 2 số hạng liên tiếp với nhau ta có
\(A=\left(1+7\right)+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{998}\left(1+7\right)\)
\(A=8\left(1+7^2+7^4+7^6+...+7^{996}+7^{998}\right)\) chia hết cho 4
Cho n > hoặc = 5. Chứng minh rằng n! có chữ số tận cùng là 0.
n! = 1.2.3.4.5.......
Ta thấy : tích trên có thừa số 2 và 5 => n! có CSTC = 0
cho A = 1+50+502 +......+50999
a, chứng minh rằng A chia hết cho 51
b, chứng minh rằng tìm số 1000 chữ số tận cùng A
Chứng minh rằng: tồn tại 1 số k là số tự nhiên khác 0 sao cho \(3^k\)có chữ số tận cùng là 001
#)Góp ý :
Bạn tham khảo nhé :
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/218057796597.html
#)Góp ý :
Bạn tham khảo nhé :
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/218057796597.html
Tham khảo tại :
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
_Hắc phong_
chứng minh rằng số chính phương có chữ số tận cùng ko thể là 2, 3, 7, 8
bởi vì khj bình phương lên thì nó ko có mấy số này
chứng minh rằng số chính phương không thể có chữ số tận cùng là 2 ,3 , 7 , 8
Vì số tự nhiên có các chữ số tận cùng là : 0; 1; 2; 3; ... 8; 9.
Mà số chính phương bằng bình phương của số tự nhiên.
Nên số chính phương có các chữ số tận cùng là : 02 ;12 ;22 ; ... 82 ; 92.
Hay : 0; 1; 4; 9; 6; 5; 6; 9; 4; 1. (Không có 2; 3; 7; 8)
Vậy số chính phương không thể tận cùng là các chữ số 2; 3; 7; 8.
Cho số tự nhiên n. Chứng minh rằng:
a, Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b, Nếu b tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
c, Số N^5 và n có chữ số tận cùng như nhau
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
Cho số tự nhiên n. Chứng minh rằng :
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n4 tận cùng bằng 6.
c) Số n5 và n có chữ số tận cùng như nhau.