Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PH
Xem chi tiết
MA
Xem chi tiết
TH
Xem chi tiết
PS
Xem chi tiết
ZZ
13 tháng 1 2020 lúc 18:02

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
PS
13 tháng 1 2020 lúc 18:32

câu a làm cách khác đi bạn

Bình luận (0)
 Khách vãng lai đã xóa
GT
Xem chi tiết
TL
Xem chi tiết
AN
8 tháng 3 2017 lúc 13:40

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

Bình luận (0)
H24
11 tháng 3 2017 lúc 10:36

?????????????????????????

Bình luận (0)
VT
19 tháng 3 2017 lúc 11:25

Bình luận (0)
VK
Xem chi tiết
HN
23 tháng 12 2016 lúc 10:24

Nếu \(x>3,y>3,z>3\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (không thỏa)

Vậy trong ba số x,y,z tồn tại ít nhất một số nguyên dương không lớn hơn 3

Không mất tính tổng quát, ta giả sử x là số nhỏ nhất. Vậy thì \(x\le y,x\le z\Rightarrow x=1\) , x = 2 hoặc x = 3

Nếu x = 1 thì \(\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow y+z=yz\) (bài toán tìm nghiệm nguyên kinh điển bạn tự làm nhé.)

Nếu x = 2 , x = 3 cũng tương tự.

Bình luận (0)
PD
Xem chi tiết
H24
23 tháng 8 2020 lúc 20:48

Ơ hơ mới thấy câu này cách đây vài ngày

Em show lại cách làm :")

Giả sử \(x>3;y>3;z>3\)

thì \(VT< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1< 2\left(ktm\right)\)

Vậy trong 3 số x,y,z có ít nhất 1 số nhỏ hơn 3

Mà x,y,z là các số nguyên dương nên

Coi x là số nhỏ hơn 3

\(\left(+\right)x=1\Rightarrow\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow y+z=yz\)

\(\Leftrightarrow y-yz-1+z=-1\)

\(\Leftrightarrow\left(y-1\right)\left(z-1\right)=1\)

Dễ tìm được \(y=2;z=2\) \(\left(y=0;z=0\left(ktm\right)\right)\)

\(\left(+\right)x=2\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{3}{2}\)

\(\Leftrightarrow2y+2z=3yz\)

\(\Leftrightarrow6y-9yz-4+6z=-4\)

\(\Leftrightarrow\left(3y-2\right)\left(3z-2\right)=4\)

\(\Leftrightarrow\left(y,z\right)=\left(1,2\right);\left(2,1\right)\)( một số cặp khác ko thỏa mãn )

Vậy ta có các cặp x,y,z thỏa mãn : \(\left(1,2,2\right);\left(2,2,1\right);\left(2,2,1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
Me
22 tháng 9 2019 lúc 9:47

                                                                   Bài giải

\(\frac{1}{2}+x=\frac{2x}{2}\)

\(x=\frac{2x}{2}-\frac{1}{2}\)

\(x=\frac{2x-1}{2}\)

\(\Rightarrow\text{ }2\cdot x=2x-1\)

\(2x-2x=1\)

\(0=1\text{ ( Vô lí ) }\)

\(\Rightarrow\text{ Không có số tự nhiên nào thỏa mãn đề bài}\)

Bình luận (0)
H24
22 tháng 9 2019 lúc 9:51

                                                                  Bài giải

\(\frac{1}{2}+x=\frac{2x}{2}\)

\(x=\frac{2x}{2}-\frac{1}{2}\)

\(x=\frac{2x-1}{2}\)

\(\Rightarrow\text{ }2\cdot x=2x-1\)

\(2x-2x=1\)

\(0=1\text{ ( Vô lí ) }\)

\(\Rightarrow\text{ Không có số tự nhiên nào thỏa mãn đề bài}\)

Bình luận (0)
MN
22 tháng 9 2019 lúc 10:03

TL :

\(\frac{1}{2}+x=\frac{2x}{2}\)

Bình luận (0)