Những câu hỏi liên quan
TH
Xem chi tiết
H24
18 tháng 7 2018 lúc 9:33

12976 chia hết cho 2 nên nó là hợp số.

15000 chia hết cho 2;3;5 nên nó là hợp số.

1010 + 8 có tận cùng là 0 + 8 = 8 chia hết cho 2 nên nó là hợp số.

496728 chia hết cho 2 nên nó là hợp số.

P/s:Lũy thừa có cơ số bằng 10 thì luôn có tận cùng bằng 0.

Bình luận (0)
HI
Xem chi tiết
NT
5 tháng 7 2018 lúc 15:35

Vì 12976 là số chẵn nên \(⋮2\Rightarrow\)12976 là hợp số.

Vì 15000 là số chẵn nên \(⋮2\Rightarrow\)15000 là hợp số.

Vi \(10^{10}+8\)là số chẵn nên \(⋮2\Rightarrow\)\(10^{10}+8\)là hợp số.

Vì 496728 là số chẵn nên \(⋮2\Rightarrow\)496728 là hợp số.

Bình luận (0)
H24
18 tháng 7 2018 lúc 9:33

12976 chia hết cho 2 nên nó là hợp số.

15000 chia hết cho 2;3;5 nên nó là hợp số.

1010 + 8 có tận cùng là 0 + 8 = 8 chia hết cho 2 nên nó là hợp số.

496728 chia hết cho 2 nên nó là hợp số.

P/s:Lũy thừa có cơ số bằng 10 thì luôn có tận cùng bằng 0.

Bình luận (0)
NV
Xem chi tiết
QT
28 tháng 11 2015 lúc 21:26

Vì 12976 chia hết cho 2, 12976 > 2

=> 12976 là hợp số

15000 chia hết cho 2, 15000 > 2

=> 15000 là hợp số

10^10+8 chia hết cho 2, 10^10 +8 > 2

=> 10^10+8 là hợp số

Bình luận (0)
H24
28 tháng 11 2015 lúc 21:35

Vì cả ba số 12976;15000;1010+8 đều có chữ số tận cùng là số chẵn => các số đó chia hết cho 2 và các số 12976;15000;1010+8 đều là các số tự nhiên lớn hơn 2

Bình luận (0)
CC
Xem chi tiết
TN
9 tháng 8 2016 lúc 19:45

1. Dạng tổng quát 2k+1

2.gọi 2 số tự nhiên lẻ là a và b. ta có a=2k+1, b=2k' +1

khi đó a+b= 2(k+k')+2 luôn luôn chia hết cho 2

Bình luận (0)
TN
28 tháng 8 2016 lúc 20:06

Bài 1: 2.k+1

Bài 2: Tổng của hai số tự nhiên lẻ có tận cùng là các số chẵn => tổng hai số tự nhiên lẻ thì chia hết cho 2

Bình luận (0)
H24
18 tháng 7 2018 lúc 9:34

12976 chia hết cho 2 nên nó là hợp số.

15000 chia hết cho 2;3;5 nên nó là hợp số.

1010 + 8 có tận cùng là 0 + 8 = 8 chia hết cho 2 nên nó là hợp số.

496728 chia hết cho 2 nên nó là hợp số.

P/s:Lũy thừa có cơ số bằng 10 thì luôn có tận cùng bằng 0.

Bình luận (0)
H24
Xem chi tiết
GD

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

Bình luận (0)
GD

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bình luận (0)
NH
2 tháng 12 2023 lúc 8:37

Bài 3: 

\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8

Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7 

⇒ 7040 + a \(\times\) 100 ⋮ 7

1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7 

        5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)

Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7 

⇒ 7048 + a\(\times\) 100 ⋮ 7

1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7

       6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)

Nếu b = 4 ta có: \(\overline{7a4b}\)  =  \(\overline{7a44}\) ⋮ 7

⇒ 7044 + 100a ⋮ 7

1006.7 + 2 + 14a + 2a ⋮ 7 

       2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)

Kết hợp (1); (2); (3) ta có:

(a;b) = (1;0); (8;0); (4;8); (6;4)

Bình luận (0)
DD
Xem chi tiết
HP
9 tháng 3 2021 lúc 18:35

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
VM
Xem chi tiết
NG
Xem chi tiết