Tìm x,y,z biết :
2x/5=3y/10=z/12 và x+y+z=109
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm x, y, z biết \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\) và x+y+z=109
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)
\(\Rightarrow\frac{1}{6}.\frac{2x}{5}=\frac{1}{6}.\frac{3y}{10}=\frac{1}{6}.\frac{z}{12}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{72}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)
Bạn xem lại đề bài nhé !!!
Ta có :
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)
\(\Leftrightarrow\)\(\frac{2x}{5}.\frac{1}{6}=\frac{3y}{10}.\frac{1}{6}=\frac{z}{12}.\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)
Và \(x+y+z=109\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)
Do đó :
\(\frac{x}{15}=\frac{109}{107}\)\(\Rightarrow\)\(x=\frac{109}{107}.15=\frac{1635}{107}\)
\(\frac{y}{20}=\frac{109}{107}\)\(\Rightarrow\)\(y=\frac{109}{107}.20=\frac{2180}{107}\)
\(\frac{z}{72}=\frac{109}{107}\)\(\Rightarrow\)\(z=\frac{109}{107}.72=\frac{7848}{107}\)
Vậy \(x=\frac{1635}{107}\)\(;\)\(y=\frac{2180}{107}\) và \(z=\frac{7848}{107}\)
Chúc bạn học tốt ~
Tìm x y z
2x/5y=3y/10=z/12 và x+y+z=109
tìm x,y,z biết ràng
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\) và x+y+z=109
Lời giải:
Đặt $\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}=t$
$\Rightarrow x=\frac{5}{2}t; y=\frac{10}{3}t; z=12t$
Khi đó:
$x+y+z=109$
$\Leftrightarrow \frac{5}{2}t+\frac{10}{3}t+12t=109$
$\Leftrightarrow \frac{107}{6}t=109\Rightarrow t=\frac{654}{107}$
$\Rightarrow x=\frac{5}{2}t=\frac{1635}{107}; y=\frac{10}{3}t=\frac{2180}{107}; z=12t=\frac{7848}{107}$
timf= x, y ,z trong truong hop sau :
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)va x+y+z = 109
tìm x, y biết
x/3 = y/9 và 2x-y = 12
x/2 = y/4 = z/5 và x+y-z = 3
x/2 = y/7 và x-y = -25
x/4 = y/5 = z/5 và 2x +3y - 5z =3
2x = 3y và x+y = 10
giải giùm mình bài này với ạ
ta có : x/3=y/9 => 2x/6=y/9
=> 2x/6=y/9=2x-y/6-9=12/-3=-4
+, 2x/6=-4 => x=-12
+, y/9=-4 => y=-36
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm x, y, z biết
a) 2x=3y-2x và x+y= 12
b) 7x-2y=5x-3y và 2x=3y=20
c) 2x=3y=4z-2y và x+y+z=35
d)3x=4y-2x=7z-4y và x+y-2z=10
Bài 1: Tìm các số x,y,z biết
a, x/y=5/8 và x-y=12
b, x/4=y/3=z/9 và x-3y+4z=62
c, a/3=b/8=c/5 và 3a+b-2c=14
d, a/10=b/6=c/21 và 5a+b-2x=28
Bài 2: tìm x,y,z biết
a, x/3=b/4; y/5=z/7 và 2x+3y-z=186
b, x/3=y/4; y/3=z/5 và 2x-3y+z=6
c, x:y:z=3:8:5 và 3x+y-27=14
Giúp mk lm vs ạ mk cảm ơn nhiều ạ
Mk cần gấp để nộp ạ
Tìm x,y,z biết:
a)x/2=y/5 ; y/3=z/2 và x+y+z = -12
b)2x=3y=5z và x-y+z = 33
giúp mk vs mk cần rất gấp
a) Ta có:
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y+z}{6+15+10}=-\frac{12}{31}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{72}{31}\\y=-\frac{180}{31}\\z=-\frac{120}{31}\end{cases}}\)
b) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}x=45\\y=30\\z=18\end{cases}}\)