Những câu hỏi liên quan
LA
Xem chi tiết
LN
3 tháng 1 2017 lúc 21:03

gọi m là ƯCLN (2n+3;4n+6)

=> 2n + 3 chia hết cho m

=> 2(2n+3) chia hết cho m

=> 4n+6 chia hết cho m

=> [(4n+6)-(4n+6)]chia hết cho m

còn phần sau thì bn tự lm tiếp nha

b,gọi x là ƯCLN(2n+3 và 4n +8)

=> 2n + 3 chia hết cho m

=> 2(2n+3) chia hết cho m

=> 4n+6 chia hết cho m

=> [(4n+8)-(4n+6)]chia hết cho m

=>2 chia hết cho m

còn phần sau bn tự lm típ nha

chúc bn hok tốt

Bình luận (0)
HD
Xem chi tiết
HG
29 tháng 7 2015 lúc 10:04

Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:

4n+3 chia hết cho d

2n+3 chia hết cho d => 4n+6 chia hết cho d

=> 4n+6-(4n+3) chia hết cho d

=> 3 chia hết cho d

Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1

=> 2n+3 chia hết cho 3

=> 2n+3+3 chia hết cho 3

=> 2n+6 chia hết cho 3

=> 2(n+3) chia hết cho 3

=> n+3 chia hết cho 3

=> n = 3k - 3

Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3

Bình luận (0)
ZZ
Xem chi tiết
NL
21 tháng 11 2016 lúc 13:36

Gọi Ước chung lớn nhất của 2 số là m

Ta có : 4.(2n+3 ) = 8n+12

          2.(4n+3) = 8n + 6

Ta có : 8n + 12 chia hết cho m

           8n + 6 chia hết cho m

Suy ra : ( 8n + 12 ) - ( 8n + 6) chia hết cho m

Suy ra : 6 chia hết cho m

Vậy m thuộc Ư(6)

Suy ra : m thuộc { 1;2;3;6}

Mà m lớn nhất , suy ra m = 6

Duyệt đi , chúc bạn học giỏi

Bình luận (0)
KK
Xem chi tiết
LC
30 tháng 10 2015 lúc 21:15

Gọi ƯCLN(2n+3,4n+7)=d

=>2n+3 chia hết cho d=>2.(2n+3)=4n+6 chia hết cho d

    4n+7 chia hết cho d

=>4n+7-(4n+6) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy ƯCLN(2n+3,4n+7)=1

Bình luận (0)
HN
30 tháng 10 2015 lúc 21:14

1

làm nhẩm vậy thoy

Bình luận (0)
KK
30 tháng 10 2015 lúc 21:31

biết làm rồi hỏi cho vui thôi

Bình luận (0)
PK
Xem chi tiết
H24
11 tháng 11 2018 lúc 14:32

Gọi d là Ưcln(2n+1;4n+8) 

\(2n+1⋮d;4n+8⋮d\Rightarrow4n+8-2\left(2n+1\right)⋮d\Rightarrow6⋮d\)

\(2n+1\left(lẻ\right);UCLN\left(6\right)lẻ=3\Rightarrow UCLNcotheco=3\Leftrightarrow2n+1=3\Rightarrow2n=3-1=2\)

\(\Rightarrow n=1\)

Bình luận (0)
NT
Xem chi tiết
NT
9 tháng 9 2023 lúc 9:16

a) Vì \(n;n+1\) là 2 số tự nhiên liên tiếp \(\left(n< n+1\right)\)

\(\Rightarrow\left(n;n+1\right)=1\)

\(\Rightarrow UCLN\left(n;n+1\right)=1\)

b) \(4n+18=2\left(2n+9\right)⋮\left(1;2;2n+9\right)\left(n\inℕ\right)\)

Ta lại có :

 \(2n+9⋮2n+1\)

\(\Leftrightarrow2n+9-2n-1⋮2n+1\)

\(\Leftrightarrow8⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;2;4;8\right\}\)

\(\Leftrightarrow n\in\left\{0\right\}\)

\(\Rightarrow UCLN\left(2n+1;4n+18\right)=UCLN\left(1;18\right)=1\left(n=0\right)\)

\(\Rightarrow\left(2n+1;2n+9\right)=1\)

mà \(2n+1⋮\left(1;2n+1\right)\)

\(\Rightarrow UCLN\left(2n+1;4n+18\right)=1\)

Bình luận (0)
CC
Xem chi tiết
CY
Xem chi tiết
CY
1 tháng 12 2017 lúc 20:20

a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1         ( n e N )

    Ta có : 4n + 3 \(⋮\)d                  ( 1 )

                2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d                      ( 2 )

      Từ ( 1 ) và ( 2 ) suy ra :       ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d

                                          hay          1 \(⋮\)d      suy ra       d = 1

                       Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1 

b)   Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5 

      Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d                  ( 1 )

                  4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d                  ( 2 )

        Từ ( 1 ) và ( 2 ) suy ra

             ( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d

       Hay 13 \(⋮\)d

      Suy ra d e ƯC ( 13 ) = { 1 ; 13 }

          Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13

                  suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2       ( k e N )

                    Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13  nên d không thể là 13.

             Do đó d = 1 

                    Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1

  

Bình luận (0)
H24
3 tháng 12 2017 lúc 16:39

) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.

Bình luận (0)
HB
5 tháng 12 2017 lúc 19:36

) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N ) T

a có : 4n + 3 ⋮d ( 1 )

2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d hay 1 ⋮d

suy ra d = 1 Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1

b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5

Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )

4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )

Từ ( 1 ) và ( 2 ) suy ra ( 12n + 15 ) - ( 12n + 2 ) ⋮d Hay 13 ⋮d

Suy ra d e ƯC ( 13 ) = { 1 ; 13 }

Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13

suy ra 13n - ( n - 2 ) chia hết cho 13

suy ra n - 2 chia hết cho 13

suy ra n - 2 = 13k

suy ra n = 13k + 2 ( k e N )

Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.

Bình luận (0)
NT
Xem chi tiết
NV
17 tháng 12 2016 lúc 22:39

Gọi d ∈ ƯC(2n + 3, 4n + 8) (d ∈ N)

=> (2n + 3)⋮d và (4n + 8)⋮d

=> 2(2n + 3)⋮d và (4n + 8)⋮d

=> (4n + 6)⋮d và (4n + 8)⋮d

=> [(4n + 8) - (4n + 6)]⋮d

=> 2⋮d

=> d ∈ Ư(2)

=> d ∈ {1; 2}

Vì 2n + 3 là số lẻ nên d ≠ 2

=> d = 1

=> ƯC(2n + 3 ; 4n + 8) = {1}

=> ƯCLN(2n + 3, 4n + 8) = 1

Vậy ƯCLN(2n + 3, 4n + 8) = 1

Bình luận (0)