cmr với mọi n nguyên thì (5n-1)(n+3)-9n+3 chia hết cho 10
CMR với mọi n nguyên dương thì n3+5n+22n+1-2 chia hết cho 6
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
tự chứng minh n3+5n=n3-n+6n=(n-1)n(n+1)+6n chia hết cho 6
phần còn lại là 22n+1-2=4n.2-2=2(4n-1) chia hết cho 2.3(=6)
->đfcm
cmr với mọi số nguyên n thì 4n3+9n2-19n-30 chia hết cho 6
Cmr với mọi số tự nhiên n thì Q=10n-9n-1 chia hết cho 81
Ta có :
10n−9n−1=(10n−1)−9n=99999.....99999−9n10n−9n−1=(10n−1)−9n=99999.....99999−9n(n chữ số 9)
=9(1111.....111−n)=9(1111.....111−n)(n chữ số 1)
Thấy : 1111.....1111111.....111(n chữ số 1) có tổng các chữ số là n
Nên 1111....111−n⋮31111....111−n⋮3
Vì n ⋮3 thì cũng ⋮81
⇒9(1111....1111−n)⇒9(1111....1111−n)(n chữ số 1) chia hết cho 81
Hay 10n−9n−1⋮2710n−9n−1⋮81(đpcm)
# Chúc bạn học tốt
CMR:
a)(5n+2)^2-4 chia hết cho 5 với mọi sối nguyên
b)n^3-n chia hết cho 6 với mọi sối nguyên
c)n^3+23 chia hết cho 6 với mọi sối nguyên
d)3n^4-14n^3+21n^2-10n chia hết cho 24 với mọi sối nguyên
a, Khai trển phương trình :
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5.
lưu ý : (a+b)^2 = a^2 + 2ab + b^2
CMR với mọi số nguyên n thì:
a) (n+5)(n-2) +14 ko chia hết cho 49
b) n2 +5n -10 ko chia hết cho 28
Câu hỏi của Nguyễn Anh Tuấn - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài này nhé.
Bài 1 :CMR: số có dạng 9n+1 không chia hết cho 4 với mọi số nguyên n
Bài 2:CMR : tích 2 số chẵn chi hết cho 8
Bài 3: CMR: n3-3n2-n+3 chia hết cho 48 với n lẻ
Bài 4: CMR: n5-5n3+4n chia hết cho 120 với mọi n c Z
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
cmr: với mọi số tự nhiên N thì tích (n+3)(9n+6) chia hết cho 2
ai tic gium minh lai bi tru diem hoi dap nua roi
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
CMR với mọi số nguyên n ta có:
a, ( n2+n-1)-1 chia hết cho 24
b, n5- 5n3+ 4n chia hết cho 120