cho a , b thỏa mãn : \(a^3-3ab^2=10\) và . \(b^3-3a^2b=5\) Tính \(P=a^2+b^2\)
Cho a^3 -3ab^2 = 10 và b^3 - 3a^2b = 5. Tính: a^2 + b^2
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b =10 . TÍnh S=a^2 +b^2
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
cho a;b thỏa mãn a^3 -3ab^2 =19 va b^3-3a^2b=98
tinh a^2+b^2
\(a^3-3ab^2=19\Rightarrow\left(a^3-3ab^2\right)^2=361\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=361\left(1\right)\)
\(b^3-3a^2b=98\Rightarrow\left(b^3-3a^2b\right)^2=9604\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=9604\left(2\right)\)
\(\text{Công 2 vế (1) và (2) ta được :}\)
\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=9956\)
\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=9956\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=9956\)
\(\Leftrightarrow a^2+b^2=\sqrt[3]{9956}\)
cho a^3-3ab^2=5 và b^3-3a^2b=10
Tính S=a^2+b^2
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Cho a, b là hai số thực thỏa mãn a3 - 3ab^2=19
b^3-3a^2b=98
tìm a^2+b^2
giúp mk nha
thôi mk tự lm đc rồi:
(a^3- 3ab^2)^2=361
=a^6- 6a^4b^2+ 9a^2 b^4
(b^3-3a^2b)^2=9604
=b^6- 6a^2b^4+9a^4 b^2
cộng 2 vế->(a^2+b^2)^3= 9604+361= 9965
mn check hộ mk nha
Cho hai số a và b thỏa mãn điều kiện \(a^3\)+\(3ab^2= 14 \) và \(b^3 + 3a^2b= 13.\) Tính giá trị của: P= \(a^2 - b^2\)
Ta có:
\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=196\)
\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=169\)
Lại có:
\(\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=27\)
\(\Leftrightarrow a^6+6a^4b^2+9ab^4-b^6-6a^2b^4-9a^4b^2=27\)
\(\Leftrightarrow a^6-3a^4b^2+3a^2b^4-b^6=27\)
\(\Leftrightarrow\left(a^2-b^2\right)^3=27\)
\(\Leftrightarrow a^2-b^2=\sqrt[3]{27}=3\)
\(a^3+3ab^2+b^3+3a^2b=27=\left(a+b\right)^3\Rightarrow a+b=3\)
\(a^3+3ab^2-b^3-3a^2b=1\Rightarrow\left(a-b\right)^3=1\Rightarrow a-b=1\)
\(\Rightarrow a^2-b^2=\left(a-b\right).\left(a+b\right)=3\)
ket ban voi minh di
Giúp tôi nhé
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b = 10
Tính S = 2016a^2 + 2016b^2
dễ thôi . bạn bình phương 2 cái họ cho đó sau đó cộng lại. tìm đc a^2 + b^2 bằng 5 thì phải ( mk nhẩm thế ) sao đó tính là xong
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Cho \(a^3-3ab^2=5\) và \(b^3-3a^2b=10\). Tính \(M=a^2+b^2\)
Ta có \(\left(a^3-3ab^2\right)^2\) =\(a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2=100\)
\(=>\left(a^3-3a^2b\right)^2-\left(b^3-3a^2b\right)^2=a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(< =>a^6+3a^4b^2=3a^2b^4+b^6=125\)
\(< =>\left(a^2+b^2\right)^3=125\)
\(=>a^2+b^2=5\)