Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PT
Xem chi tiết
NH
Xem chi tiết
EM
3 tháng 4 2016 lúc 13:18

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Bình luận (0)
NH
3 tháng 4 2016 lúc 13:29

cảm ơn bạn nha

Bình luận (0)
MM
Xem chi tiết
NM
Xem chi tiết
LH
6 tháng 4 2015 lúc 21:50

Ta có:

\(\frac{1}{5^2}

Bình luận (0)
HM
6 tháng 4 2015 lúc 22:43

thuỳ dung đúng đấy

Bình luận (0)
HB
30 tháng 3 2018 lúc 20:08

ME TOO

Bình luận (0)
PH
Xem chi tiết
TN
2 tháng 8 2017 lúc 12:30

Đặt :

\(A=\frac{1}{5^2}+\frac{1}{6^2}+.........+\frac{1}{2007^2}\)

Ta thấy :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

...........................

\(\frac{1}{2007^2}>\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+........+\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{2007}-\frac{1}{2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(\Leftrightarrow A>\frac{1}{5}\)

Bình luận (0)
MM
Xem chi tiết
H24
20 tháng 7 2019 lúc 14:31

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2006.2007}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2006}-\frac{1}{2007}=\frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\)

Bình luận (0)
HN
Xem chi tiết
H24
1 tháng 8 2019 lúc 15:58

#)Giải :

Ta có : \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2007.2008}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2007}-\frac{1}{2008}=\frac{1}{5}-\frac{1}{2008}=\frac{2003}{10004}>\frac{1}{5}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Bình luận (0)
ND
1 tháng 8 2019 lúc 16:00

\(\frac{1}{5}-\frac{1}{2018}>\frac{1}{5}????\)

Bình luận (0)
H24
1 tháng 8 2019 lúc 16:02

#)Góp ý :

Chết ! máy tính lỗi rùi :v xin lỗi bn, mk tính nhầm, ph là \(\frac{2003}{10040}>\frac{1}{5}\) nhé @@ sai òi

Bình luận (0)
NB
Xem chi tiết
VK
17 tháng 8 2017 lúc 7:46

Ta có : 1/5^2 + 1/6^2 + 1/7^2 +....+ 1/2007^2 > 1/5.6 + 1/6.7 + 1/7.8 +...+ 1/2007.2008 = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 +....+ 1/2007 - 1/2008 = 1/5 -1/2008 ko > 1/5

Bình luận (0)
NB
18 tháng 8 2017 lúc 21:07

nhưng cái biểu thức nó cũng lớn hơn cái biểu thức bạn đưa ra nên ko thể chứng minh nó >\(\frac{1}{5}\)

Bình luận (0)
NB
18 tháng 8 2017 lúc 21:19

mk ms nghĩ ra câu trả lời này, mn kiểm tra hộ mk xem nó có đúng ko nhé

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\left(\frac{1}{4}-\frac{21}{100}\right)+\frac{1}{6.7}+...\frac{1}{2007.2008}=B\)

\(B=\left(\frac{1}{4}-\frac{21}{100}\right)+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}...+\frac{1}{2007}-\frac{1}{2008}\)

\(B=\left(\frac{1}{4}-\frac{21}{100}\right)+\left(\frac{1}{6}-\frac{1}{2008}\right)>\frac{1}{5}=\left(\frac{1}{4}-\frac{1}{20}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)\)

\(\Rightarrow B>\frac{1}{5}\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Bình luận (0)
BV
Xem chi tiết
TD
29 tháng 5 2017 lúc 15:48

bài này dài lắm

\(A=\frac{\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}}{\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}}\)

\(A=\frac{\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)}{\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)}\)

\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)}\)

\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)}\)

\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}\)

\(A=\frac{\left(\frac{1}{100}\right)}{\left(\frac{1}{25}\right)}=\frac{1}{4}\)

\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{125}{42}}{\frac{2000}{43}-\frac{250}{252}-\frac{2000}{257}}\)

\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{6000}{2016}}{\frac{2000}{43}-\frac{2000}{2016}-\frac{2000}{257}}\)

\(B=\frac{16.\left(\frac{1}{9}-\frac{1}{127}+\frac{1}{2017}\right)}{5.\left(\frac{1}{2017}+\frac{1}{9}-\frac{1}{127}\right)}-\frac{6000.\left(\frac{1}{43}-\frac{1}{257}-\frac{1}{2016}\right)}{2000.\left(\frac{1}{43}-\frac{1}{2016}-\frac{1}{257}\right)}\)

\(B=\frac{16}{5}-3=\frac{1}{5}\)

Đặt \(C=\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}\)

\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2005^2}+\frac{1}{2006^2}+\frac{1}{2007^2}\)

\(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}+\frac{1}{2006.2007}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2006}+\frac{1}{2006}-\frac{1}{2007}\)

\(=\frac{1}{4}-\frac{1}{2017}\left(đpcm\right)\)

\(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2005.2006}+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2007}-\frac{1}{2008}\)

\(=\frac{1}{5}-\frac{1}{2008}\left(đpcm\right)\)

Vậy \(A>\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}>B\)

Bình luận (0)