Những câu hỏi liên quan
MT
Xem chi tiết
H24
Xem chi tiết
VK
Xem chi tiết
PA
23 tháng 7 2016 lúc 9:14

\(\hept{\begin{cases}x^2+y^2+xy=37\left(1\right)\\x^2+z^2+xz=28\left(2\right)\\y^2+z^2+yz=19\left(3\right)\end{cases}}\)

trừ pt(1) cho pt(2) ta có \(y^2+xy-z^2-xz=9\)<=> \(\left(y-z\right)\left(y+z\right)+x\left(y-z\right)=9\)

                                                                                   <=> \(\left(y-z\right)\left(x+y+z\right)=9\)(4)

trừ pt(2) cho pt(3) ta có \(x^2+xz-y^2-yz=9\)

                                    <=>\(\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=9\)

                                 <=> \(\left(x-y\right)\left(x+y+z\right)=9\)(5)

từ (4) và (5) ==>\(\left(y-z\right)\left(x+y+z\right)=\left(x-y\right)\left(x+y+z\right)\)

mà x+y+z khác 0 ==> \(y-z=x-y\)

                     ==> x+z=2y <=> x+y+z=3y

mà (x-y)(x+y+z)=9 <=> \(\left(x-y\right)3y=9\)

                              <=> \(\left(x-y\right)y=3\) 

                        <=> \(xy-y^2=3\)

                            <=>\(xy=y^2+3\)

                        <=> \(x=y+\frac{3}{y}\)(6)

thay (6) vào pt (1) ta có \(\left(y+\frac{3}{y}\right)^2+y^2+\left(y+\frac{3}{y}\right)y=37\)

                        <=>\(3y^4-28y^2+9=0\)

 đặt \(y^2=t\left(t\ge0\right)\) thì pt trở thành \(3t^2-28t+9=0\)

                           <=>\(\left(3t-1\right)\left(t-9\right)=0\) 

                            <=> \(\orbr{\begin{cases}t=\frac{1}{3}\\t=9\end{cases}}\)(TMĐK)

ĐẾN ĐÂY CẬU TỰ GIẢI NỐT TÌM x;y;z nhé  ( bài hay quá )

Bình luận (0)
LY
Xem chi tiết
CD
24 tháng 1 2019 lúc 17:27

\(\hept{\begin{cases}\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2+\frac{x^2+y^2+z^2}{3}=0\\x^2+y^2+z^2=3\end{cases}}\)

=>\(\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2=-\frac{3}{2}\) vo lý

=> hệ vô nghiệm

Bình luận (0)
H24
24 tháng 1 2019 lúc 17:29

???? Cao Văn  Đức !!!!

Bài làm chả có căn cứ J cả?

Bình luận (0)
KS
24 tháng 1 2019 lúc 17:42

\(x^2+y^2+z^2=xy+yz+zx\)

\(2\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall z;y\\\left(z-x\right)^2\ge0\forall z;x\end{cases}}\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow x=y=z\Leftrightarrow x^2=y^2=z^2\)

Ta có: \(x^2+y^2+z^2=3\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x^2=y^2=z^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

Bình luận (0)
TA
Xem chi tiết
BM
Xem chi tiết
OC
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TX
1 tháng 11 2017 lúc 8:56

ta nhân vế đầu cho 2 ta được:

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

mà \(\left(x-y\right)^2>=0;\left(y-z\right)^2>=0;\left(z-x\right)^2>=0\)

dấu "=" xảy ra khi và chỉ khi \(x=y=z\)

thế vào 2 ta có \(x^{2001}+x^{2001}+x^{2001}=3^{2002}\Leftrightarrow x^{2002}=3^{2002}\Leftrightarrow x=3\)

Bình luận (0)