Tìm hai số nguyên a,b khác nhau sao cho :\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}\cdot\frac{1}{b}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm 2 số nguyên a,b kHác nhau sao cho: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)
1/a-1/b=1/a.1/b
=>b-a/ab=1/ab
=>b-a=1
Vậy có vô số a,b sao cho b-a=1
Tìm tất cả các số nguyên dương a,b,c đôi một khác nhau sao cho biểu thức :\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)nhận giá trị nguyên dương
Tìm hai số nguyên a và b khác nhau biết:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)
1/a-1/b=1/a.1/b
Vậy a.b=6
vậy a=2;b=6
=>1/2-1/3=1/2.1/3=1/6
\(\text{1/a-1/b=1/a.1/b Vậy a.b=6 vậy a=2;b=6 =>1/2-1/3=1/2.1/3=1/6}\text{1/a-1/b=1/a.1/b Vậy a.b=6 vậy a=2;b=6 =>1/2-1/3=1/2.1/3=1/6}\)
1/a-1/b=1/a.1/b
Vậy a.b=6
vậy a=2;b=6
=>1/2-1/3=1/2.1/3=1/6
Tồn tại hay không hai số nguyên dương khác nhau sao cho\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
Tìm 2 số nguyên a và b sao cho:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}\cdot\frac{1}{b}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)
\(\frac{a-b}{ab}=\frac{1}{ab}\)
\(a-b=1\Rightarrow a=1+b\)
Bài titanic sai vì lỡ ab = 0 thì sao . cách giải nè
1/a-1/b=1/a.1/b ( điều kiện xác định a,b khác 0 )
Thì lúc đó cách giải của titanic mới đúng !
Thấy đúng thì tk nha
cho các số a,b,c đôi một hác nhau và khác 0, thoả mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
tính giá trị biểu thức M=\(\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
a)Tìm 2 số nguyên dương a,b khác nhau biết\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b) tìm số nguyên tố P biết P chia hết cho 42 dư r là hợp số . tìm r
a, Giả sử tồn tại a,b thỏa mãn đề bài
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)
\(\Rightarrow-\left(a-b\right)^2=ab\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)
Mà a,b là số nguyên dương => ab > 0
=> Mâu thuẫn
=> Giả sử sai
Vậy không tồn tại a,b thỏa mãn đề
b, https://olm.vn/hoi-dap/question/1231.html
Cho a,b,c là sô khác nhau
CMR:\(\frac{a+b}{a-b}\cdot\frac{b+c}{b-c}+\frac{b+c}{b-c}\cdot\frac{c+a}{c-a}+\frac{c+a}{c-a}\cdot\frac{a+b}{a-b}=-1\)
\(\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{b+c}{b-c}.\frac{c+a}{c-a}+\frac{c+a}{c-a}.\frac{a+b}{a-b}\)
\(=\frac{\left(a+b\right)\left(b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(b+c\right)\left(c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c-a\right)\left(a-b\right)}\)
\(=\frac{\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(b+c\right)\left(c+a\right)\left(a-b\right)+\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
.............
cho a, b, c là 3 số thực khác 0, thỏa mãn
\(\frac{a+b-2017\cdot c}{c}=\frac{b+c-2017\cdot a}{a}=\frac{c+a-2017\cdot b}{b}\)
tính giá trị của biểu thức
B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)