Giai phuong trinh :
7x^2 - 13x + 2 = 0
3x^2 + 5x + 60 = 0
1.tong tat ca cac nghiem cua phuong trinh : 3x4+5x3-x2-5x-2=0 la
2. tich tat ca cac nghiem cua phuong trinh 2x4+7x3-2x2-13x+6=0
giai phuong trinh:2x3-x2-13x-6=0
Giai phuong trinh :
2x^4-7x^3+9x^2-7x+2=0
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
giai phuong trinh x^4-7x^3+14x^2-7x+1=0
chỗ cuối là -1 chứ
Giai phuong trinh
\(\frac{7x}{x-1}-\frac{5x}{x+1}+\frac{x+21}{x^2-1}=0\)
ĐK: x khác -1 và x khác 1.
\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)
<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0
<=> 2x2 + 13x + 21 = 0
<=> 2x2 + 6x + 7x + 21 = 0
<=> 2x.(x + 3) + 7.(x + 3) = 0
<=> (x + 3).(2x + 7) = 0
<=> x + 3 = 0 hoặc 2x + 7 = 0
<=> x = -3 hoặc x = -7/2
Vậy S = {-7/2; -3}.
Giai phuong trinh \(\sqrt{x-3}-\sqrt{7x-3}=\sqrt{5x-2}\)
ĐK:\(x\ge3\)
PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)
Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.
giai phuong trinh
6x^4-5x^3-38x^2-5x+6=0
giai phuong trinh sau x^5-5x^4+4x^3+4x^2-5x+1=0
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
giai phuong trinh : \(\frac{4x}{x^2-5x+6}+\frac{3x}{x^2-7x+6}=6\)