Tính
1/1x2+1/3x4+...+1/199x200
1/101++1/102+...+1/200
chứng minh rằng
a,1\101+1\102+...+1\199+1\200 <1
b,1\101+1\102+...+1\149+1\150>1\3
c,1\101+1\102+...+1\199+1\200>7\12
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi
cái này ở trong học tốt toán 6 đúng không
Cho A = 1/101+1/102+...+1/200
1, So sánh: 1/101 với 1/102;...;1/101 với 1/200
2, Chứng minh rằng : A > 1
1/Bạn thấy trong phép chia thì phép nào có số chia lớn hơn thì thương nhỏ hơn, vì vậy ps có mẫu lớn hơn thì nhỏ hơn.
2/ Ta có: Số số hạng của tổng là 200
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(...\)
\(\frac{1}{199}>\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}>\frac{1}{200}+...+\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(mỗi bên đều 200 số hạng)
\(\Rightarrow A>\frac{1}{200}.200\)
\(\Rightarrow A>1\)
So sánh:
a)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với 1
b)\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{149}+\dfrac{1}{150}\) với\(\dfrac{1}{3}\)
c)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với \(\dfrac{7}{12}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200
1/ So sánh 1/101 với 1/102 ; ... ; 1/101 với 1/200
2/ Chứng minh: A <1
Giúp mình đi mà :v
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
1/1x2+1/2x3+1/3x4+1/24x25
1/1x2+ 1/2x3+1/3x4+1/24x25
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200
1/ So sánh 1/101 với 1/102 ; ... ; 1/101 với 1/200
2/ Chứng minh: A <1
Giúp mình đi mà :v
Chưa hiểu lắm đề câu 1 :v thôi làm tạm câu 2 nhé (sửa lại đề câu 1 đi -_-)
Ta có : $\dfrac{1}{101}<\dfrac{1}{100};\dfrac{1}{102}<\dfrac{1}{100};...;\dfrac{1}{200}<\dfrac{1}{100}$
Vì A có 100 phân số : $(200-101):1+1=100$
$=>A<\dfrac{1}{100}.100=1$
1/ \(\dfrac{1}{101}>\dfrac{1}{102};...;\dfrac{1}{101}>\dfrac{1}{200}\)
2/ Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{101}< \dfrac{1}{100}\\...\\\dfrac{1}{200}< \dfrac{1}{100}\end{matrix}\right.\Rightarrow A=\dfrac{1}{101}+...+\dfrac{1}{200}< \dfrac{1}{100}+...+\dfrac{1}{100}\)
( 100 phân số \(\dfrac{1}{100}\) )
\(\Rightarrow A< \dfrac{1}{100}.100=1\)
\(\Rightarrowđpcm\)
N = 1/101 + 1/102+ ............ + 1/200
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)
=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\)
=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)