\(\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-...-\frac{1}{2004×2005}\)
Tính nhanh:
A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
B=\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
A = \(\frac{-79}{90}\)
B = \(\frac{8}{9}\)
\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
A=\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Ta có:
A = \(\frac{1}{5.6}\)+ \(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
Bạn xem lời giải của mình nhé:
Giải:
\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\\ =\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\\ =\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\\ =\frac{1}{5}-\frac{1}{12}=\frac{12-5}{60}=\frac{7}{60}\)
Chúc bạn học tốt!
A=\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
=1/5 - 1/6+1/6 -1/7+1/7-1/8+....+1/11 - 1/12
= 1/5 - 1/12
=12/60 -5/60
= 7/60
TÍNH HỢP LÍ
\(\frac{9}{8}-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}\)\(\frac{1}{72}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}\)
\(A=\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{11\times12}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{4}-\frac{1}{12}\)
\(A=\frac{3}{12}-\frac{1}{12}=\frac{2}{12}=\frac{1}{6}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
1/2+6+12+20+30+42+56+72+90
=1/90
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
_\(\frac{1}{90}\)_ (\(\frac{1}{72}\)+\(\frac{1}{56}\)+\(\frac{1}{42}\)+\(\frac{1}{30}\)+\(\frac{1}{20}\)+\(\frac{1}{12}\)+\(\frac{1}{6}\)+\(\frac{1}{2}\))
Bạn tự làm tiếp nha