A=1/3+1/3^2+1/3^3+.....+1/3^50
Chứng minh rằng A<1/2
Chứng minh rằng:
A=1+3^2+3^4+...+3^50
a)A=3^52-1/8
b)8A+1=81^13
Lời giải:
a.
$A=1+3^2+3^4+....+3^{50}$
$3^2A=3^2+3^4+3^6+....+3^{52}$
$\Rightarrow 3^2A-A=(3^2+3^4+3^6+....+3^{52}) - (1+3^2+3^4+....+3^{50})$
$\Rightarrow 8A=3^{52}-1$
$\Rightarrow A=\frac{3^{52}-1}{8}$ (đpcm)
b.
Có: $8A=3^{52}-1=(3^4)^{13}-1=81^{13}-1$
$\Rightarrow 8A+1=81^{13}$ (đpcm)
Bài 1. Chứng minh rằng:
A = 2/3 . 4/5 . ... . 4998/4999 < 0,02
Bài 2. Chứng minh rằng:
a) 1/26 + 1/27 + ... + 1/56 = 99/50 - 97/49 + ... + 7/4 - 5/3 + 3/2 - 1
b) 1- 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 = 1/101 + 1/102 + ... + 1/200
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
1+1/2+1/3+1/4+...+1/2^100-1 chứng minh rằng 50<A<100
Ta có:
A=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+......+1/15)+........+ (1/2^99+1/2^99+1+........+1/2^100-1)
(Có 99 nhóm) < 1+2.1/2+2^2.1/2^2+2^3.1/2^3+.....+2^99.1/2^99
=>1+1+1+.......+1 (100 số 1)=100
=>A1+1/2+2.1/2^2+2^2.1/2^3+2^3.1/2^4+.....+2^991/2^100-1-1/2^100 =1+1/2+1/2+1/2+1/2+........+1/2-1/2^100 (100 số 1/2)
=1+100.12-1/2^100
=50+1-1/2^100>50
=>A>50 (2)
Từ (1)và (2)=>50
tính tổng
1. A =1/1^2+1/2^2+1/3^2+1/4^2+...+1/50^2
chứng minh rằng A <2
2. S=3+3/2+3/2^2+3/2^4+...+3/2^9
A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)
A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
=>A<1(câu 1)
Cho A=1/2^2+1/3^2+...+1/50^2.Chứng minh rằng a>1/4
a, cho biểu thức A=3+3^2+3^3+3^4+........+3^99. Tìm số dư trong phép chia A cho 39
b, chứng minh rằng (50 chữ số 1) 111...12111...1 (50 chữ số 1) không phải là số nguyên tố
Cho A = 1/3 mũ 2 +1/4 mũ 2 +...+1/50 mũ 2. Chứng minh rằng 1/4 < A < 4
B1 : Chứng minh rằng : A= 1/2^2 + 1/3^2+........+ 1/ 50^2 <173/100
B2 : Chứng minh : B= 1/2^3 + 1/3^3 + 1/4^3 + ...... + 1/n^3 <1/4
Bd2 là bài trong đềhọc kì ở trường tớ