Những câu hỏi liên quan
HL
Xem chi tiết
HG
6 tháng 10 2021 lúc 11:02

a) Từ giả thiếtta có thể đặt :  \(n^2-1=3m\left(m+1\right)\)  với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :

 \(TH1:2n-1=3u^2;2n+1=v^2\)

\(TH2:2n-1=u^2;2n+1=3v^2\)

\(TH1:\)

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2=2\left(mod3\right)\)

Còn lại TH2 cho ta  \(2n-1\) là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)

\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ  \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ  \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )

Bình luận (1)
 Khách vãng lai đã xóa
PB
Xem chi tiết
GG

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

Bình luận (2)
 Khách vãng lai đã xóa
HM
Xem chi tiết
HT
2 tháng 7 2021 lúc 19:50

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 11 2024 lúc 21:45

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

Bình luận (0)
NH
Xem chi tiết
NK
Xem chi tiết
NK
21 tháng 12 2015 lúc 22:13

Gọi 4 số tự nhiên liên tiếp đó là a-1;a;a+1;a+2

Theo đề ra ta có

\(a\left(a-1\right)\left(a+1\right)\left(a+2\right)+1=\left[a\left(a+1\right)\right]\left[\left(a-1\right)\left(a+2\right)\right]+1\)

\(=\left(a^2+a\right)\left(a^2+a-2\right)+1\)

Đặt \(a^2+a-1=x\)

=>\(\left(x-1\right)\left(x+1\right)+1=x^2-1+1=x^2\)là số chính phương 

Vậy ...

 

Bình luận (0)
NK
Xem chi tiết
NM
25 tháng 12 2015 lúc 10:16

a+(a+1(+(a+2(+(a+3) +1 = 4a+7 

với a =5 => 4.5 + 7 =27 không là số chính phương

=> đề sai

Bình luận (0)
NK
Xem chi tiết
NM
9 tháng 12 2015 lúc 21:41

A=n +(n+1)+(n+2)+(n+3)+1 =4n +7 

với n =2 => A =15 là số chính phương đâu

Bạn nhầm tổng với tích thì phải

Bình luận (0)
NV
9 tháng 12 2015 lúc 21:32

google nhé bạn,có đấy

tick nha

Bình luận (0)
NN
Xem chi tiết
AH
15 tháng 2 2021 lúc 23:41

Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:

$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$

$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$

Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$

$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.

Ta có đpcm.

Bình luận (0)
NH
Xem chi tiết
HH
3 tháng 12 2015 lúc 23:45

Gọi 4 số đó là a  ;  a+1   ;   a+2   ; a+3

a(a+1)(a+2)(a+3)+1=(a(a+3))((a+1)(a+2))+1=(a2+3a)(a2+3a+2)+1

Đặt b=a2+3a

b(b+2)+1=b2+2b+1=(b+1)2 chính phương

Bình luận (0)