Tính GTNN của A=\(\frac{x^2-2x+2018}{x^2}\)
Mọi người giúp mk vs nha. Mk gần thi rồi
Tìm GTNN của :
M= x2 + y2 - xy +2x - 4y - 2018
Mọi người giúp mk vs ạ
\(4M=4x^2+4y^2-4xy+8x-16y-8072\)
\(=\left[\left(4x^2-4xy+y^2\right)-2\left(2x+y\right).2+4\right]+\left(3y^2-12y+12\right)-8088\)
\(=\left[\left(2x-y\right)^2-2\left(x-y\right).2+4\right]+3.\left(y^2-4y+4\right)-8088\)
\(=\left(2x-y-2\right)^2+3.\left(y-2\right)^2-8088\ge-8088\)
\(\Rightarrow M\ge-2022\)
Dấu “=” xảy ra \(\Leftrightarrow2x-y-2=0andy-2=0\Leftrightarrow x=y=2\)
Vậy \(GTNNcuaM=-2022\Leftrightarrow x=y=2\)
Tìm GTNN của biểu thức
M=x2 +y2 -xy -2x -2y +2
Giải giúp mk nha mk đang cần gấp
Cảm ơn mọi người ạ
\(M=x^2+y^2-xy-2x-2y+2\)
\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)
\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)
"=" khi x=y=2
Vậy Min M là -2 khi x=y=2
\(M=x^2+y^2-xy-2x-2y+2\)
\(4M=4x^2+4y^2-4xy-8x-8y+8\)
\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)
\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)
\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)
\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)
\(\Rightarrow4M\ge-8\)
\(\Leftrightarrow M\ge-2\)
Dấu "=" xảy ra khi :
Dấu bằng xảy ra khi :
2x - y - 2 = 0 x = 2
<=>
y - 2 = 0 y = 2
Vậy Min M = - 2 khi x=y=2
Giải Pt sau:
1+ 2/x-2 = 2x^2/x^2-4
Mn giúp mk vs ạ, 2h nữa mk thi rồi, cam on mn.
$ĐKXĐ : x \neq 2, x \neq -2$
Ta có : $1+\dfrac{2}{x-2} = \dfrac{2x^2}{x^2-4}$
$\to \dfrac{x^2-4+2.(x+2)}{(x-2).(x+2)} = \dfrac{2x^2}{(x-2).(x+2)}$
$\to x^2-4+2.(x+2) = 2x^2$
$\to x^2 -2x - 8 = 0 $
$\to (x-4).(x+2) = 0 $
$\to x = 4$ ( Do $x \neq -2, 2$ )
Vậy \(S=\left\{4\right\}\)
Bài 1: Tìm x, biết:
a) 5(x+3)-2x(3+x)=0
b) 4x(x-2018)-x+2018=0
c) (x+1)2 - (x+1)=0
Ngày mai mk nộp rồi, mong các bn giúp mk!!!
Mk có bán hàng, ai giải được ,đúng giúp mk, mk sẽ giảm tiền cho người đó.
Mk cái j cx bán hết, nên m.n cứ ib mk nha!!
nick fb: https://www.facebook.com/le.ran.7543
\(5\left(x+3\right)-2x\left(x+3\right)=0\)
<=> \(\left(5-2x\right)\left(x+3\right)=0\)
<=> \(\hept{\begin{cases}5-2x=0\\x+3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
\(4x\left(x-2018\right)-x+2018=0\)
<=> \(4x\left(x-2018\right)-\left(x-2018\right)=0\)
<=> \(\left(4x-1\right)\left(x-2018\right)=0\)
<=> \(\hept{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x+1-1\right)=0\)
<=> \(\left(x+1\right).x=0\)
<=> \(\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
học tốt
a) \(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(5\left(x+3\right)+2x\left(x+3\right)=0\)
\(\left(x+3\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{-5}{2}\end{cases}}\)
b) \(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
c) \(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
MỌI NGƯỜI GIÚP MK VS Ạ , mk cần rất gấp . cảm ơn các bạn nha
câu 1, tìm GTNN của M=x^2-5x+y^2-xy-5x-4y+2014
câu 2, cho x,y,z>0 và x+y+z=1. Tìm GTNN của S=1/x +4/y + y/z
câu 3. cho pt x^2-5x+m-2=0
tìm m để pt có 2 nghiệm dương phân biệt thõa mãn \(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
2/ \(S=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
a,\(\frac{x-1}{4}\)=\(\frac{2x+1}{5}\)
b, \(\frac{x+2}{x-1}\)= \(\frac{x-3}{x+1}\)
đề bài là tìm x nha mọi người
mọi người giúp mk đi mk đg cần . mk sẽ tick cho
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)
\(\Rightarrow5x-5=8x+4\)
\(\Rightarrow5x-8x=4+5\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
vậy_
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)
\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
vậy_
a,Tìm GTNN của A = | x - 3 | + ( 50 ) b,Tìm GTNN của B = 2014 - | x+8 | c, Tìm GTNN của C = | x-100 | + | y +2014 | - 2015
MỌI NGƯỜI GIÚP MK NHA MK CẦN GẤP HẬU TẠ SAU
a, Vì |x-3| \(\ge\)0
=>A=|x-3|+50\(\ge\)50
Dấu "=" xảy ra khi x=3
Vậy GTNN của A = 50 khi x=3
b, Vì |x+8| \(\ge0\)
=>B=2014-|x+8|\(\le2014\)
Dấu "=" xảy ra khi x=-8
Vậy GTLN của B = 2014 khi x=-8
c, Vì \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+2014\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+2014\right|\ge0\)
\(\Rightarrow C=\left|x-100\right|+\left|y+2014\right|-2015\ge-2015\)
Dấu "=" xảy ra khi x=100,y=-2014
Vậy GTNN của C=-2015 khi x=100,y=-2014
tim gtnn cua bieu thuc a=(x-1)(2x-1)(2x^2-3x-1)+2017
mọi ng giúp mk vs mai mk phải nộp rồi
A = ( x-1)(2x-1)(2x2-3x-1) + 2017 = (2x2-3x+1)(2x2-3x-1) + 2017
= ( 2x2-3x)2- 1 + 2017
= ( 2x2-3x)2+ 2016
Mà (2x2-3x)2 >= 0 với mọi x => A = (2x2-3x)2+ 2016 >= 2016
Dấu ' = ' xảy ra <=> ( 2x2-3x)2 = 0 <=> 2x2-3x = 0 <=> x ( 2x-3) = 0
<=>\(\orbr{\begin{cases}x=0\\2x-3=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy : min A = 2016 <=> \(\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
thu gọn rồi tính giá trị của biểu thức:
(2x^2+y)(x-6xy)-2x(x-3y^2)(x+1)+6x^2y(y-2x) với x=-2 và /y/=3
MONG MỌI NGƯỜI GIÚP MK GIẢI NHANH BÀI NÀY NHOA!!!!!!!!!!!!!!!! MK ĐANG CẦN GẤP <3<3