Những câu hỏi liên quan
LA
Xem chi tiết
LN
Xem chi tiết
YT
Xem chi tiết
TH
25 tháng 9 2021 lúc 18:32

1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)

 

Bình luận (0)
H24
Xem chi tiết
LA
28 tháng 7 2016 lúc 9:24

a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(-1+\sqrt{100}\)

= -1 +10

=9

Bình luận (0)
JQ
28 tháng 7 2016 lúc 9:39

b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1  (1)

Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)

Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)

Bình luận (0)
JQ
28 tháng 7 2016 lúc 9:58

c)\(\left(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{\left(2-\sqrt{2}\right)^2}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2}{2+2\sqrt{2}}+\frac{\left(2-\sqrt{2}\right)^2}{-2+2\sqrt{2}}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2\cdot\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\cdot\left(2\sqrt{2}-2\right)}+\frac{\left(2-\sqrt{2}\right)^2\cdot\left(2\sqrt{2}+2\right)}{\left(2\sqrt{2}-2\right)\left(2\sqrt{2}+2\right)}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2\cdot\left(2\sqrt{2}-2\right)+\left(2-\sqrt{2}\right)^2\cdot\left(2\sqrt{2}+2\right)}{4}\right)^2\)

=\(\left(\frac{12\sqrt{2}-12+16-8\sqrt{2}+12\sqrt{2}+12-16-8\sqrt{2}}{4}\right)^2\)

=\(\left(\frac{8\sqrt{2}}{4}\right)^2=8\)

Bình luận (0)
P1
Xem chi tiết
NT
20 tháng 10 2018 lúc 21:12

 a) \(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7\left(\sqrt{3}+\sqrt{5}\right)}}=\) \(\frac{\sqrt{2}}{\sqrt{7}}\)

 b ) \(\frac{15\sqrt{2}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=\frac{3\left(5\sqrt{2}+3\sqrt{3}\right)}{3\left(\sqrt{3}+\sqrt{5}\right)}\)\(=\frac{5\sqrt{2}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)

c)\(\frac{\sqrt{2}-\sqrt{6}+\sqrt{3}-\sqrt{9}+\sqrt{4}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) =  \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)+\sqrt{3}\left(1-\sqrt{3}\right)+\sqrt{4}\left(1-\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\(=\frac{\left(1-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

 d) \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)

Bình luận (0)
PN
Xem chi tiết
TM
Xem chi tiết
NN
8 tháng 9 2020 lúc 17:10

2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)

 \(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )

Vậy \(x=\frac{17}{3}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )

Vậy \(x=1\)hoặc \(x=2\)

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)

\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)

\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2=1\)

hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
8 tháng 9 2020 lúc 17:21

2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))

Bình phương hai vế

\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )

Vậy phương trình có nghiệm duy nhất là x = 17/3

b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))

Bình phương hai vế 

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)

\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)

\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2\)

\(=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
9 tháng 10 2017 lúc 17:49

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

Bình luận (0)
OM
7 tháng 8 2018 lúc 9:08

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1

Bình luận (0)
NT
Xem chi tiết
TN
15 tháng 6 2017 lúc 18:37

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

Bình luận (0)
VA
Xem chi tiết
NT
25 tháng 6 2017 lúc 15:19

1.  \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+\sqrt{84}\)= -6,423305878

2. \(\sqrt{150}+\sqrt{1,6}\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)= 24,79207036

NHA  Vũ Hoàng Thiên An ! ! !

K VÀ KB NHA !

Bình luận (0)