Những câu hỏi liên quan
NC
Xem chi tiết
BL
9 tháng 2 2020 lúc 18:40

+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)

\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)

\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)

\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)

\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)

max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)

+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)

\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)

\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)

\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)

Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
SM
Xem chi tiết
H24
26 tháng 9 2020 lúc 21:40

\(y-x=1\Rightarrow x=y-1\)

\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)

\(=y^2-2y+1+y^2\)

\(=2y^2-2y+1\)

\(=2\left(y^2-y+\frac{1}{2}\right)\)

\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)

\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)

Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)

Vì \(y-x=1\)nên

\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)

Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
HL
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SR
Xem chi tiết