Những câu hỏi liên quan
QL
Xem chi tiết
HM
17 tháng 9 2023 lúc 15:14

a) Ta thấy: số mũ của x trong hai đơn thức trên bằng nhau (đều bằng 2).

b) \(2{x^2} + 3{x^2} = {x^2} + {x^2} + {x^2} + {x^2} + {x^2} = 5{x^2}\) .

c) Ta có: \((2 + 3){x^2} = 5{x^2}\).

Vậy \(2{x^2} + 3{x^2}\) = \((2 + 3){x^2}\).

Bình luận (0)
NL
Xem chi tiết
SO
Xem chi tiết
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:06

a) Với \({x_0}\) bất kì, ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} + {x^2} - x_0^3 - x_0^2}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right) + \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right) = 3x_0^2 + 2{x_0}\end{array}\)

Vậy hàm số \(y = {x^3} + {x^2}\) có đạo hàm là hàm số \(y' = 3{x^2} + 2x\)

b) \({\left( {{x^3}} \right)^,} + {\left( {{x^2}} \right)^,} = 3{x^2} + 2x\)

Do đó \(\left( {{x^3} + {x^2}} \right)'\) = \(\left( {{x^3}} \right)' + \left( {{x^2}} \right)'.\)

Bình luận (0)
LH
Xem chi tiết
ND
13 tháng 9 2018 lúc 20:00

x=6-2=4

y=2+2=4

=> x=y

Bình luận (0)
DA
13 tháng 9 2018 lúc 20:00

X=4

Y=4

Vậy X và Y bằng nhau

K mk nhé

Bình luận (0)
MH
13 tháng 9 2018 lúc 20:00

x+2=2*3

x=4

y-2=6:3

y=4

Vậy x=y

K nhé MN???????????????

Hok tốt!!!!!

Bình luận (0)
NB
Xem chi tiết
ND
15 tháng 8 2023 lúc 21:21

1) ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\\\sqrt{x}\ne-3\left(LĐ\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có : \(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}.\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

2) Với \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

Do đó : \(P=\dfrac{\sqrt{3}-1+3}{\sqrt{3}-1+1}\)

\(P=\dfrac{\sqrt{3}+2}{\sqrt{3}}=\dfrac{3+2\sqrt{3}}{3}\)

3) Xét hiệu của : P với 3 

\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-3\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\)

Ta thấy : \(\sqrt{x}+1\ge1;-2\sqrt{x}\le0\)

\(\Rightarrow\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\le0\)

\(\Rightarrow P\le3\)

Dấu bằng xảy ra : \(\Leftrightarrow x=0\). Thế lại ta thấy ktm nên P<3

Bình luận (0)
H24
Xem chi tiết
DQ
12 tháng 9 2020 lúc 18:57

a) \(B=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

ĐKXĐ: \(x\ge0,x\ne1\)

\(B=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{2}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x+3}}\)

b) Để \(B=\frac{1}{2}\Rightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)\(\Rightarrow\sqrt{x}+3=4-10\sqrt{x}\Rightarrow11\sqrt{x}=1\Rightarrow\sqrt{x}=\frac{1}{12}\Rightarrow x=\frac{1}{121}\)(Thoả mãn ĐKXĐ)

Vậy x=1/121 thì B =1/2

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
EA
Xem chi tiết