cho ba số a,b,c thỏa mãn a.b.c=1
chứng minh\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{ac+c+1}=1\)
cho số a,b,c thỏa mãn : a.b.c= 1
chứng minh : \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Cho 3 số a,b,c thỏa mãn a.b.c=18 =bc+b+1.Tính giá trị \(A=\frac{18}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ac+a+18}\)
Cho a,b,c là 3 số thỏa mãn : a.b.c = 1
Chứng minh :
\(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{a.b.c+bc+b}=1\)
Cho các số a,b,c thỏa mãn a.b.c=1
Tính A\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)
thay a.b.c=1 Ta đc:
\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1
\(=\frac{c+ac+1}{c+ac+1}=1\)
tick cho mk vs nhé
Cho a,b,c là các số thực thoả mãn a.b.c = 1. Chứng minh rằng :
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=1\)
1/1+a+ab +1/1+b+bc +1/1+c+ac
=1/a+1+ab +a/a+ab+abc +ab/ab+abc+acab
=1/a+1+ab +a/a+ab+1 +ab/ab+1+a
=1+a+ab/1+a+ab
=1
vậy 1/a+1+ab +1/1+b+bc +1/1+c+ca =1(đpcm)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Lời giải:
Dựa vào điều kiện $abc=1$ ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)
Ta có đpcm.
Ta có: \(a.b.c=1\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)
\(=\frac{1+ab+a}{1+ab+a}\)
\(=1.\)
\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)
Chúc bạn học tốt!
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Cho 3 số a, b, c thỏa mãn: a.b.c=1. Tính S= \(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)