4,6 x y +y +4,4 x y =2017
tìm y, biết : 4,6 x y + y +4,4 x y = 2017
\(4,6\times y+y+4,4\times y=2017\)
\(y\text{}\times\text{}\left(4,6+1+4,4\right)=2017\)
\(y\text{ }\times10=2017\)
\(y\text{ }=2017:10=201,7\)
4,6 x y + y +4,4 x y = 2017
=> (4,6+4,4)*y=2017
=. 9*y=2017
=> y= \(\frac{2017}{9}\)
y*(4,6+1+4,4)=2017
y*10=2017
y=2017:10
y=201,7
Tìm y :1) y x 1,2 + y x 4,6 + y + y x 5,2 = 18
y x 1,2 + y x 4,6 + y x 5,2 = 18
y x ( 1,2 + 4,6 + 5,2 ) = 18
y x 11 = 18
y = 18 : 11
y = \(\dfrac{18}{11}\)
Y x 1,2 + Y x 4,6 + Y x 5,2 = 18
Y x (1,2 + 4,6 + 5,2) = 18
Y x 11 = 18
Y = 18 : 11
Y = \(\dfrac{18}{11}\)
Câu 10 : Tìm Y:
Y x 3,2 + 6,8 x Y = 68,84 + 4,6
`y xx 3,2 + 6,8 xx y = 68,84 + 4,6`
`y xx ( 3,2 + 6,8 ) = 73,44`
`y xx 10 = 73,44`
`y = 73,44 : 10`
`y = 7,344`
y x (3,2 + 6,8) = 73,44
y x 10 = 73,44
y = 73,44 : 10
y = 7,344
y x 3,2+6,8 x y= 68,84+4,6
=> y x (3,2+6,8)=73,44
=>y x 10=73,44
=> y= 7,344
Chúc bạn học tốt!
y x 4,4 + y x 5,5 + y : 10= 8,2
Tìm y :
4,6 x y + 6,4 x y = 0,32
4,6 x y + 6,4 x y = 0,32
=>y x (4,6 + 6,4 )= 0,32
=>y x 11=0.32
=>y=0.32:11
=>y=8/275
Tính A=( x/2017-z) +( y/2017-x) + (z/2017-y)
biết x+y+z=2017, x,y,z là nguyên dương
Tìm x ; y biết: \(\hept{\begin{cases}x^{2017}+y^{2017}=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)
Điều kiện: \(x,y\ge0\)
Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ
Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)
Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)
\(\Leftrightarrow x=y\)
Thế vô (1) ta được:
\(2x^{2017}=1\)
\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.