Tìm giá trị của biến x và y để biểu thức A = ( x-2)2016 + (2y-1)2018 + 1 đạt giá trị nhỏ nhất
Với giá trị nào của x, y thì biểu thức: A = /x - y/ + /x + 1/ + 2016 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
với giá trị nào của x,y yhif biểu thức A=|x-y|+|x+1|+2018 đạt giá trị nhỏ nhất tìm giá trị nhỏ nhất đó
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
tìm giá trị của x và y để
S=|x+2|+|2y-10|+2016 đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
Vì |x-y| ≥0 với mọi x,y;|x+1|≥0 vs mọi x=>A≥2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:{
|x−y|=0 |
|x+1|=0 |
⇔{
x−y=0 |
x+1=0 |
⇔{
x=y |
x=−1 |
vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016
\(S=\left|x+2\right|+\left|2y-10\right|+2016\)
\(S\ge2016\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
a. Tìm giá trị x,y để :
S = | x + 2 | + | 2y - 10 | + 2014 đạt giá trị nhỏ nhất
b. Tìm giá trị nhỏ nhất của biểu thức : | x + 6 | + | 7 - x |
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
cho A = xy^2+ y^2(y^2 -x) +1 /x^2.y^4+2y^2+x^2 +2. Tìm giá trị của biến để A đạt giá trị nhỏ nhất
Với giá trị nào của x,y thì biểu thức : A = \(|x-y|+|x+1|+2016\)đạt giá trị nhỏ nhất. Tìm giá trị đó
Ta có : \(\left|x+1\right|\ge0\forall x\)
Nên : |x + 1| nhỏ nhất bằng 0
<=> x + 1 = 0
=> x = -1
Lại có : \(\left|x-y\right|\ge0\forall x\)
Nên : |x - y| nhỏ nhất bằng 0
=> x - y = 0
mà x = -1
=> -1 - y = 0
=> y = -1
Vậy A = |x - y| + |x + 1| + 2016 nhwor nhất bằng 0 + 0 + 2016
=> A nhở nhất bằng 2016 khi x = y = -1
Ta có: |x-y| >=0 với mọi x,y
|x+1| >=0 với mọi x,y
=> |x-y|+|x+1|+2016 >=2016 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
kb kiểu j vậy e
a) Tìm giá trị nhỏ nhất của biểu thức : "B=I x+11 I + I 1-y I + 2017 "và cho biết giá trị của "x , y" để "B" đạt giá trị nhỏ nhất.
Để B nhỏ nhất nên | x + 11| = 0 và | 1 -y | = 0
Với | x + 11 | = 0 thì x + 11 = 0 nên x = -11
Với | y - 1 | = 0 thì y - 1 = 0 nên y =1
Vậy x = -11 , y =1
hok tốt
1) Tìm giá trị nhỏ nhất của biểu thức : A=|x-2016|+2017 / |x-2016| + 2018.
2) Tìm số nguyên x,y sao cho : x-2xy+y=0
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
Với giá trị nào của x,y thì biểu thức : A=|x-y|+|x+1|+2016 đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
Vì |x-y| \(\ge\)0 với mọi x,y;|x+1|\(\ge\)0 vs mọi x
=>A\(\ge\)2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:\(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=-1\end{cases}}\)
vậy với x=y=-1 thì A đạt giá trị nhỏ nhất là 2016
k mik nha
bài này mik từng làm rồi
-----Chúc hok tốt---------