Chứng tỏ đa thức x^2-6x+20 không có nghiệm
chứng tỏ đa thức p(x)= -3x^2+6x+5 không có nghiệm
chứng tỏ đa thức p(x)= -3x^2+6x+5 không có nghiệm
Có: \(-3x^2+6x+5=x^2-2x+\frac{5}{-3}=0\)
\(=x.x-x-x+\frac{5}{-3}=0\)
\(=x\left(x-1\right)-1\left(x-1\right)-1+\frac{5}{-3}=0\)
\(=\left(x-1\right).\left(x-1\right)-\frac{8}{-3}=0\)
\(=\left(x-1\right)^2+\frac{8}{3}=0\)
\(\Rightarrow\left(x-1\right)^2=-\frac{8}{3}\)(vô lí) Vì số nguyên nào lũy thừa chẵn cũng là một số không âm)
\(\Rightarrow\)Đa thức trên không có nghiệm
chứng tỏ đa thức p(x)= -3x^2+6x+5 không có nghiệm
Cho đa thức P(x)= x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
Cho đa thức P x x2 6x 12. Chứng tỏ rằng đa thức trên không có nghiệm
Chứng tỏ đa thức không có nghiệm
\(4x^2+8x+10\)
\(x^2+4x+6\)
\(4x^{2010}+6x^{2012}+2021\)
Chứng tỏ đa thức M(x)=x2 - 6x + 10 không có nghiệm
\(x^2-6x+10\)=\(x^2-3x-3x+9+1\)=x(x-3)-3(x-3)+1=\(\left(x-3\right)^2+1\)
Vì (x-3)2>=0 trong tập hợp số thực nên (x-3)2+1>=1
Vậy \(x^2-6x+10\) không có nghiệm
Chứng tỏ các đa thức sau không có nghiệm:
a) x^2+6x+10
b) x^2+4x+7
c) x^4+2x^2+1
a,x2+6x+10
=x2+3x+3x+3.3+1
=x(3+x)+3(3+x)+1
=(3+x)(3+x)+1
=(3+x)2+1
Vì (3+x)2>hoặc=0
=>(3+x)2+1>1
Vậy đa thức trên ko có ngiệm
a) x2 + 6x + 10
= x2 + 3x + 3x + 9 + 1
= x ( x + 3 ) + 3 ( x + 3 ) + 1
= ( x + 3 ).( x + 3 ) + 1
= ( x + 3 )2 + 1 . Vì ( x + 3 ) > 0 hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm
b) x2 + 4x + 7
= x2 + 2x + 2x + 4 + 3
= x ( x + 2 ) + 2 ( x + 2 ) + 3
= ( x + 2 ).( x + 2 ) + 3
= ( x + 2 )2 + 3 . Vì ( x + 2 )2 > 0 hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm
a)x2+6x+10
=(x+3)2+1
Mà (x+3)2>=0 với mọi x thuộc R nên
(x+3)2+1>=1 Vậy ...
b)x2+4x+7
=(x+2)2+3
Mà (x+2)2>=0 với mọi x thuộc R nên
(x+2)2+3>=3 Vậy ...
c) Tương tự nha
Đúng cho mình :))
Chứng tỏ rằng x=1/2 là nghiệm của đa thức P(x)=4x^2-4x+1 và chứng tỏ đa thức Q(x) =4x^2+1 không có nghiệm
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
Ta có :
\(4x^2\ge0\)
\(1>0\)
\(\Rightarrow4x^2+1>0\)
=> Đa thức Q(x) vô nghiệm