Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Nhận xét : Vai trò của x; y như nhau nên giả sử x \(\le\) y
4x + 1 chia hết cho y => 4x + 1 = ky ( k \(\in\) N*)
Có 4x + 1 \(\le\) 4y + 1 => k.y \(\le\) 4y + 1 . => (k - 1).y + y \(\le\) 4y + 1
Vì y là số tự nhiên khác 0 => 1 \(\le\) y => (k-1).y + 1 \(\le\) (k-1)y + y \(\le\) 4y + 1
=> k - 1 \(\le\) 4 => k - 1 = 0; 1;2;3;4 => k = 1;2;3;4;5
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x +1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x =1 hoặc x = 3
=> y = 5/2 (Loại) hoặc y = 13/2 (Loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3m x ( m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = 29/3 hoặc y = 5/3 (Loại)
+) k = 4 => 4x + 1 = 4y Loại Vì 4x +1 không chia hết cho 4 mà 4y chia hết cho 4
+) k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\) chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = 1; 3; 9 => y = 1; hoặc y = 13/5 (loại); y = 37/5 (loại)
Từ các trường hợp trên các cặp số (x;y) thỏa mãn là: (1;1); (1;5); (5;21); hoăc (5;1); (21;5)
=> (4x+1)(4y+1) chia hết hco xy
=> 16xy+4x+4y+1 chia hết cho xy
Vì 16xy chia hết cho xy nên 4x+4y+1 chia hết cho xy
=> 4xy+4y2+y chia hết cho xy
=> y(4y+1) chia hết cho xy
=> 4y+1 chia hết cho x
Thế y=0,1,2,3,... ta được x
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
em có thể tham khảo trong mục câu hỏi hay nhé!
Câu này của trieu mà.Bạn vào câu hỏi hay
Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.
4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)
Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1
Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y
=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21 (chọn)
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3
=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)
+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)
+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)
Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.
4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)
Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1
Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y
=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21 (chọn)
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3
=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)
+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)
+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)
Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.
4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)
Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1
Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y
=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21 (chọn)
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3
=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)
+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)
+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)
Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.
4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)
Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1
Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y
=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21 (chọn)
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3
=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)
+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)
+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)
Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).
\(\Rightarrow\left(4x+1\right)\left(4y+1\right)⋮xy\)
\(\Rightarrow16xy+4x+4y+1⋮xy\)
vì 16xy\(⋮xynên4x+4y+1⋮xy\)
\(\Rightarrow4xy+4y^2+y⋮xy\)
\(\Rightarrow y\left(4x+1\right)⋮xy\)
\(\Rightarrow4y+1⋮x\)
thế y = 0,1,2,3,... ta được x
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.
4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)
Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1
Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y
=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21 (chọn)
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3
=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)
+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)
+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)
Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).
Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.
4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)
Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1
Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y
=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}
+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5
=> y = 5 hoặc y = 21 (chọn)
+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3
=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)
+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)
=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)
+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)
+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)
=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)
Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).
Tìm các số tự nhiên x,y biết 4x+1chia hết cho y , 4y+1 chia hết cho x
Cho x,y là các số tự nhiên khác 0,biết x+6y chia hết cho 5. Chứng tỏ 4x+4y chia hết cho 5.
Lời giải:
$x+6y\vdots 5$
$\Rightarrow x+6y-5y\vdots 5$
$\Rightarrow x+y\vdots 5$
$\Rightarrow 4(x+y)\vdots 5$
$\Rightarrow 4x+4y\vdots 5$