\(x^4+\sqrt{x^2+1981}=1981\)
x^4 + căn(x^2+1981) = 1981
* nhân cả 2 vế với 4
Giải các phương trình sau:
√x^4 + √(x^2 + 1981) = 1981
√(x-2008) -(x^2 - 2006)√(2008-x) + 1/√(x-2007)
Giúp t với ạ, t đang cần gấp, hép meeeeeeeee
x-6/1979+x-4/1981+x-2/1983=x+2/1987+x+4/1889+x+6/1991
Tính giá trị biểu thức A= x1981+ \(\frac{1}{x^{1981}}\)giả sử x2+x+1=0, với n>3
Ta có:
\(x^2+x+1=0\) Nhận xét: \(x\ne1\)
Nhân cả hai vế của phương trình trên với \(\left(x-1\right)\) ta được:
\(\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x^3-1=0\Leftrightarrow x^3=1\)
Ta có:
\(A=x^{1981}+\frac{1}{x^{1981}}=\left(x^3\right)^{660}.x+\frac{1}{\left(x^3\right)^{660}.x}\)
\(=x.1+\frac{1}{1.x}=x+\frac{1}{x}=\frac{x^2+1}{x}=\frac{-x}{x}\)
\(=-1\)
Vậy \(A=x^{1981}+\frac{1}{x^{1981}}=-1\)
So sánh: 1981-1980/1981+1980 và 19812-19802/19812+19802
\(\frac{1981^2-1980^2}{1981^2+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+1980^2}\)
\(>\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+2.1981.1980+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{\left(1981+1980\right)^2}=\frac{1981-1980}{\left(1981+1980\right)}\)
Tìm x
x-6/1979+x-4/1981+x-2/1983=x+2/1987+x+4/1989+x+6/1991
\(x=\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\) tính gt biểu thức \(D=x^3-9x+1981\)
GiáTrị của Biểu thức là:
\(\left(-3\right)\sqrt{2}\sqrt{11}\sqrt{g}\sqrt{t}+3\sqrt{2}\sqrt{11}+2\sqrt{3^3}\sqrt{5}\)
Ta có:\(x=\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\Rightarrow x^3=\left(\sqrt[3]{15+3\sqrt{22}}\right)^3+\left(\sqrt[3]{15-3\sqrt{22}}\right)^3+3\sqrt[3]{\left(15+3\sqrt{22}\right)\left(15-3\sqrt{22}\right)}\left(\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\right)\)\(\Rightarrow x^3=15+3\sqrt{22}+15-3\sqrt{22}+3\sqrt[3]{27}x\Rightarrow x^3=30+9x\Rightarrow x^3-9x+1981==2011\)
thực hiện phép tính
1981-{1981-[1985-(1+3+5+7)^2:(3+4^0)^2]}
Ta có: 1981 - {1981 - [1985 - (1 + 3 + 5 + 7)2 : (3 + 40)2 ]}
= 1981 - {1981 - [1985 - 162 : (3 + 1)2 ]}
= 1981 - {1981 - [1985 - 162 : 42 ]}
= 1981 - {1981 - [1985 - 256 : 16 ]}
= 1981 - {1981 - [1985 - 16 ]}
= 1981 - {1981 - 1969}
= 1981 - 12
= 1969
P/S: Ở đây, nếu bạn sử dụng ngoặc như mình vẫn có điểm tối đa
\(\frac{x-25}{1979}-\frac{x-24}{1980}-\frac{x-23}{1981}-\frac{x-22}{1982}=\frac{x-1979}{25}-\frac{x-1980}{24}-\frac{x-1981}{23}-\frac{x-1982}{22}\)
Bạn cộng mỗi vế cho 4 trong đó mỗi phần tử cộng với 1 = -1954(hình như vậy) thì x = 2004