Những câu hỏi liên quan
PA
Xem chi tiết
PD
16 tháng 8 2018 lúc 17:02

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

Bình luận (0)
NH
16 tháng 8 2018 lúc 17:12

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt

Bình luận (0)
VD
Xem chi tiết
KB
2 tháng 6 2018 lúc 8:33

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)

Bình luận (0)
NT
Xem chi tiết
AM
11 tháng 6 2015 lúc 15:48

a)Gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

n+1 chia hết cho d

=>(2n+3)-(n+1)=n+2 chia hết cho d

Do n+1 và n+2 là 2 số nguyên liên tiếp mà d là ước chung của 2 số đó => d=1

=>2n+3 và n+1 là 2 số nguyên tố cùng nhau => phân số \(\frac{n+1}{2n+3}\) tối giản

b) làm tương tự cũng xét hiệu như thế nha!

Bình luận (0)
LG
26 tháng 6 2018 lúc 22:10

a,

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

Bình luận (0)
PH
Xem chi tiết
H24
26 tháng 7 2015 lúc 19:32

chung minh 2 cai do co hieu la 1

giai dc ko

Bình luận (0)
H24
12 tháng 2 2018 lúc 10:49

Gọi d là ƯCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản

Bình luận (0)
HS
Xem chi tiết
KH

Gọi ƯCLN ( 2n + 3 ; 4n + 8 ) là d ( \(d\inℕ^∗\))

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)=> \(\hept{\begin{cases}2.\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

=> \(\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> \(\left(4n+8\right)-\left(4n+6\right)⋮d\)

      \(4n+8-4n-6⋮d\)

                                  \(2⋮d\)

=> \(d\in\left\{1;2\right\}\)( vì \(d\inℕ^∗\))

    Mà 2n + 3 là số lẻ \(\forall n\inℕ\)

=> d = 1

=> \(\frac{2n+3}{4n+8}\)là phân số tối giản

Vậy \(\frac{2n+3}{4n+8}\)là phân số tối giản

 
Bình luận (0)
BD
16 tháng 4 2019 lúc 7:40

   Gọi d = ƯC ( 2n + 3 , 4n + 8 ) 

        Xét hiệu : 

                         \(\left(4n+8\right)-\left(2n+3\right)⋮d\)

                          \(4n+8-2\left(2n+3\right)⋮d\)

                           \(4n+8-4n-6⋮d\)

                           \(2⋮d\rightarrow d\inƯ\left(2\right)\)

                           Ư(2) = { 1 , 2 }

     \(d\ne2\)vì \(2n+3⋮̸\)3

      \(\rightarrow d=1\)

                    Vậy...

                                     \(#Hoqchac-Cothanhkhe\)

Bình luận (0)
IY
16 tháng 4 2019 lúc 8:21

gọi d là ước nguyên tố của  2n+3 và 4n+8

Ta có

\(\Rightarrow4n+8-2n+3⋮d\)

\(\Rightarrow4n+8-2(2n+3)⋮d\)

\(\Rightarrow4n+8-4n+6⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d=2\)

\(\Rightarrow2n+3⋮2\)\((khiđó\) \(4n+8⋮2)\)

\(\Rightarrow2n+3⋮2\)

\(\Rightarrow2n+3-2⋮2\)

\(\Rightarrow2n+1⋮2\)

vì(1;2)1

Nên2n\(⋮\)2

Vậy n thỏa mãn với mọi số tự nhiên

Bình luận (0)
DV
Xem chi tiết
SG
23 tháng 7 2016 lúc 10:46

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

Bình luận (0)
AJ
Xem chi tiết
DV
7 tháng 6 2016 lúc 13:57

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

Bình luận (0)
PK
7 tháng 6 2016 lúc 15:11

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

Bình luận (0)
TD
Xem chi tiết
NK
23 tháng 2 2016 lúc 12:06

Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d

và 4n + 5 chia hết cho d

=> 1 chia hết cho d

=> d = 1 (Vì d thuộc N*)

=> UWCLN(2n + 3; 4n + 5) = 1

=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n

Vậy,........

Bình luận (0)
LV
Xem chi tiết