Tìm số nguyên n sao cho (2n^2 +7) chia hết cho (n+3)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
Tìm số nguyên n sao cho a,2n-7 chia hết cho n+3 b, n+5 chia hết cho 2n-1 c, n-8 chia hết cho n+1
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
b, n+5 chia hết cho 2n-1 => 2(n+5) chia hết cho 2n-1 => 2n+10 chia hết cho 2n-1
2n-1 chia hết cho 2n-1
=>2n+10-(2n-1) chia hết cho 2n-1
=>2n+10-2n+1 chia hết cho 2n-1
=>11 chia hết cho 2n-1
=>2n-1 E Ư(11)={1;-1;11;-11}
=>n E {1;0;6;-5}
a) 2n-7 chia hết cho n+3
=> 2n+6-13 chia hết cho n+3
=> 2(n+3)-13 chia hết cho n+3
=> 2(n+3) chia hết cho n+3 ; 13 chia hết cho n+3
=> n+3 thuộc Ư(13)={-1,-13,1,13}
Ta có bảng :
n+3 | -1 | -13 | 1 | 13 |
n | -4 | -16 | -2 | 10 |
vậy n={-18,-16,-4,10}
b) Như ST làm
c) n-8 chia hết cho n+1
=> n+1-9 chia hết cho n+1
=> n+1 chia hết cho n+1 ; 9 chia hết cho n+1
=> n+1 thuộc Ư(9)={-1,-3,-9,1,3,9}
=> n={-2,-4,-10,0,2,8}
tìm số nguyên n sao cho
a, n+12 chia hết cho n+7
b, n-6 chia hết cho n +4
c, 3n+2 chia hết cho n-1
d,n^2+2n-7 chia hết cho n-2
e, 4n+3 chia hết cho 2n-1
tìm số nguyên n sao cho
a,n+2 chia hết cho n-1
b,n-7 chia hết cho 2n+3
c,n x n-2 chia hết chon+3
tìm các số nguyên n sao cho A = n^3 - 2n^2 +7n-7 chia hết cho n^2+3
Tìm số nguyên n sao cho:
a) n + 17 chia hết cho n + 2
b) 2n + 18 chia hết cho n + 3
c) n + 1 là ước của 2n + 7.
a,
thì bn lập luận
n+2 và n+ 17 đều chia hết cho n+2
=> ( n+17)-(n+2) chia hết cho n+2
=> 15 chia hết cho n+2
=> n+ 2 thuộc ước của 15
b, câu này thì bn nhân n+ 3 với 2 rồi trừ di như câu a nhé
c, thì nhân n+1 với 2
thế nhé !!!!
Phân tích ra là được mà bạn.
a, n+17=(n+2)+15
Để n+17 chia hết cho n+2=>15 chi hết cho n+2
=> n+2 thuộc U(15)
tìm ước của 15 rooif lâp bảng là được mà
Phần b làm tương tự còn phần c có nghĩa là mình CM được 2n-7 chia hết cho n+1 là ok.
Tìm số nguyên n sao cho
a,n+2 chia hết cho n-1
b,n-7 chia hết cho 2n+3
c, n2-3 chia hết cho n+3
Bài làm
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
=> ( n - 1 ) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư3
=> Ư3 = { 1; -1; 3; -3 }
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vậy x thuộc { 2; 0; 4; -2 }
n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
=> ( n - 1 ) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư3
=> Ư3 = { 1; -1; 3; -3 }
c) Ta có: n2 - 3 \(⋮\)n + 3
=> n(n + 3) - 3(n + 3) + 6 \(⋮\)n + 3
Do n(n + 3) - 3(n + 3) \(⋮\)n + 3
=> 6 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Lập bảng:
n + 3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | -2 | -4 | -1 | -5 | 0 | -6 | 3 | -9 |
Vậy ....
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63