Những câu hỏi liên quan
LN
Xem chi tiết
LH
Xem chi tiết
TT
Xem chi tiết
H24
18 tháng 4 2022 lúc 19:02

`a) A(x) + M(x) = B(x)`

`->( 2x^2 - 5 + 9x ) + M(x) = ( 3x^2 + 9x - 1 )`

`-> M(x) = ( 3x^2 + 9x - 1 ) - ( 2x^2 - 5 + 9x )`

`-> M(x) = 3x^2 + 9x - 1 - 2x^2 + 5 - 9x`

`-> M(x) = x^2 + 4`

__________________________________

`b)` Cho `M(x) = 0`

 `-> x^2 + 4 = 0`

`-> x^2 = -4` (Vô lí vì `x^2 >= 0` mà `-4 < 0`)

Vậy đa thức `M(x)` không có nghiệm

Bình luận (0)
H24
18 tháng 4 2022 lúc 19:04

a, ta có A(x) + M(x)= B(x) 
    => M(x)= B(x) - A(x)= (3x2+9x-1) -(2x2-5+9x)
                                    = 3x2+9x-1 -2x2 +5 -9x
                                    = (3x2-2x2) +( 9x-9x)+(5-1)
                                    = x2 +4
b, Ta có x2> hoặc bằng 0 => x2+4 >0
 

Bình luận (0)
VH
Xem chi tiết
UN
7 tháng 5 2017 lúc 20:19

 DO x^4;3x^2 lớn hơn hoặc = 0( bn tự viết dấu) vs mọi x => x^4 + 3x^2 + 3 lớn hơn hoặc = 0 vs mọi x => P(x) = ... vô nghiệm

Bình luận (0)
HT
Xem chi tiết
VD
Xem chi tiết
BH
9 tháng 4 2018 lúc 10:48

Ta có: x2-3x+5 = x2-2.(3/2)x+9/4 + 11/4 = \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) với mọi x

=> h(x)=x2-3x+5 > 0 với mọi x

Bình luận (0)
LV
Xem chi tiết
DC
12 tháng 4 2016 lúc 22:03

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

Bình luận (0)
DH
12 tháng 4 2016 lúc 21:35

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
AK
Xem chi tiết
DL
4 tháng 10 2019 lúc 19:44

a, x3 - 19x - 30

= x3 - 5x2 + 5x2 - 25x + 6x + 30

= (x2 + 5x + 6)(x - 5)

= (x + 3)(x + 2)(x - 5)

d, x4 - 2x2 - 24

= x4 - 6x2 + 6x2 - 24

= (x2 - 6)(x + 4)

Bình luận (0)
TL
Xem chi tiết
PN
14 tháng 2 2016 lúc 21:45

\(a.\)  Từ  \(x-2y=1\)  \(\Rightarrow\)  \(x=1+2y\)  \(\left(\text{*}\right)\)

Thay  \(x=1+2y\)  vào \(A\), khi đó, biểu thức \(A\)  trở thành

\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)

\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\)  với mọi  \(y\)

Dấu  \(''=''\)   xảy ra  \(\Leftrightarrow\)  \(\left(y+\frac{2}{5}\right)^2=0\)  \(\Leftrightarrow\)  \(y+\frac{2}{5}=0\)  \(\Leftrightarrow\)  \(y=-\frac{2}{5}\)

Thay  \(y=-\frac{2}{5}\)  vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)

Vậy,  \(A\)  đạt giá trị nhỏ nhất là  \(A_{min}=\frac{21}{5}\)  khi và chỉ khi   \(x=\frac{1}{5}\)  và  \(y=-\frac{2}{5}\)

\(b.\)  Gọi  \(Q\left(x\right)\)  là thương của phép chia và dư là \(r=ax+b\)  (vì dư trong phép chia cho  \(x^2-1\)  có bậc cao nhất là bậc nhất), với mọi  \(x\)  ta có:

\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\)   \(\left(\text{**}\right)\)

Với  \(x=1\)  thì  phương trình \(\left(\text{**}\right)\)  trở thành  \(5=a+b\)  \(\left(1\right)\)

Với  \(x=-1\)  thì phương trình  \(\left(\text{**}\right)\)  trở thành \(7=-a+b\)  \(\left(2\right)\)

Giải hệ phương trình  \(\left(1\right)\)  và  \(\left(2\right)\), ta được \(a=-1\)  và  \(b=6\)

Vậy, dư trong phép chia đa thức  \(x^{2008}-x^3+5\)  cho đa thức \(x^2-1\)  là  \(-x+6\)

 

Bình luận (0)