\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2018.2019}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\), ta có:
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
mk đầu tiên đấy
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2003.2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2003}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{2005}\right)=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}=\)
\(=\frac{2}{2.1.3}+\frac{2}{2.3.5}+\frac{2}{2.5.7}+....+\frac{2}{2.2003.2005}\)
\(=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\frac{2004}{2005}\)
\(=\frac{1002}{2005}\)
Chúc bạn học tốt nha!
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\right)\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)
\(\frac{1}{2}.\frac{2004}{2005}\)
\(\frac{2004}{2.2005}=\frac{1002}{2005}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
Đặt tên bthuc là A
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=1-\frac{1}{21}=\frac{20}{21}\)
=>\(A=\frac{20}{21}:2=\frac{10}{21}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)
\(=\frac{9}{19}\)
sr nhìn nhầm đề bài
\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{29.31}\)
\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{29.31}\)
=> \(2P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{29.31}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{31-29}{29.31}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{29}-\frac{1}{31}\right)\)
\(=1-\frac{1}{31}=\frac{30}{31}\)
=> \(P=\frac{30}{31}:2=\frac{15}{31}\)
Nếu đề là tính thì bạn làm như sau nhé :
\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{29.31}\)
\(\Rightarrow2P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{29.31}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{30}{31}\)
\(\Rightarrow P=\frac{30}{31}\div2=\frac{15}{31}\)
\(P=\left(\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+...+\frac{2}{29\cdot31}\right)\cdot\frac{1}{2}\)
\(P=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{29}-\frac{1}{31}\right)\cdot\frac{1}{2}\)
\(P=\left(1-\frac{1}{31}\right)\cdot\frac{1}{2}\)
\(P=\frac{30}{31}\cdot\frac{1}{2}\)
\(P=\frac{15}{31}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{1}{99.101}\)
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
k cho mình nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
TA CÓ \(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
Tính
a)S1=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b)S2=\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
c)S3=\(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
a,tính \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
b,CMR A\(=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{(2n-1).(2n+1)}\le\frac{1}{2}\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
Tính : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{19.21}\)
gọi biểu thức là A
ta có :
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}...\frac{1}{19.21}\)
=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}...\frac{2}{19.21}\)
2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{21}\)
2A = 1 - \(\frac{1}{21}\)
2A = \(\frac{20}{21}\)
A = \(\frac{20}{21}:2=\frac{10}{21}\)
tìm x : \(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)
\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)
\(\frac{1}{x}=\frac{50}{101}\)
\(x=1:\frac{50}{101}\)
\(x=\frac{101}{50}\)
Vậy \(x=\frac{101}{50}\)