Những câu hỏi liên quan
LA
Xem chi tiết
AH
23 tháng 7 2021 lúc 18:28

Lời giải:

$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$

$\Rightarrow c< 0$

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$

Từ đây ta có:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))

Ta có đpcm.

Bình luận (0)
DL
Xem chi tiết
NC
6 tháng 7 2019 lúc 11:31

Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
GL
6 tháng 7 2019 lúc 11:33

Ta có bổ đề

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

ÁP DỤNG BỔ ĐỀ VÀO P ta có

\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc.\frac{3}{abc}=3\)

Vậy P=3

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết
HN
Xem chi tiết
HN
3 tháng 4 2018 lúc 19:30

Giup mk vs

Bình luận (0)
NH
Xem chi tiết
DT
6 tháng 7 2016 lúc 21:50

ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow c\left(a+b\right)=-ab\Rightarrow a+b=-\frac{ab}{c}\)

CMTT:

\(a+c=-\frac{ac}{b}\)

\(b+c=-\frac{bc}{a}\)

Thay vào biểu thức \(A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

\(\Rightarrow A=\frac{\left(-\frac{ab}{c}.-\frac{bc}{a}.-\frac{ac}{b}\right)}{abc}=-\frac{a^2b^2c^2}{a^2b^2c^2}=-1\)

T I C K ủng hộ nha mình cảm ơn

___________CHÚC BẠN HỌC TỐT NHA _____________________

Bình luận (0)
BT
Xem chi tiết
TP
15 tháng 8 2019 lúc 23:14

\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)

Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)

Nhân theo vế ta đc :

\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bđt Cauchy :

\(VT\ge\frac{8abc}{abc}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
HM
Xem chi tiết
NC
20 tháng 11 2019 lúc 16:18

Ta có: \(m+n+p=2ma+2np+2pc\Rightarrow ma+np+pc=\frac{1}{2}\left(m+n+p\right)\)(1)

lại  có: 

\(\hept{\begin{cases}m=bn+cp\\n=am+cp\\p=am+bn\end{cases}\Rightarrow}\hept{\begin{cases}m-n=bn-am\\n-p=cp-bn\\p-m=am-cp\end{cases}}\Rightarrow\hept{\begin{cases}m\left(a+1\right)=n\left(b+1\right)\\n\left(b+1\right)=p\left(c+1\right)\\p\left(c+1\right)=m\left(a+1\right)\end{cases}}\)

\(\Rightarrow\frac{1}{m\left(a+1\right)}=\frac{1}{n\left(b+1\right)}=\frac{1}{p\left(c+1\right)}=\frac{3}{ma+mb+mc+m+n+p}\)( Dãy tỉ số bằng nhau)

\(=\frac{3}{\frac{1}{2}\left(m+n+p\right)+n+m+p}=\frac{2}{n+m+p}\)

=> \(\frac{1}{a+1}=\frac{2m}{m+n+p}\)

\(\frac{1}{b+1}=\frac{2n}{m+n+p}\)

\(\frac{1}{c+1}=\frac{2p}{m+n+p}\)

=> \(A=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2m+2n+2p}{m+n+p}=2\)

Bình luận (0)
 Khách vãng lai đã xóa
CG
Xem chi tiết
TN
13 tháng 7 2018 lúc 9:22
Bài ca dao nói về một vấn đề đơn giản, nhưng ý nghĩa thì lớn lao vô cùng, vẽ ra trước mắt ta một bức tranh lao động với con người đang miệt mài hăng say giữa trưa hè gay gắt. Và thành quả lao động là những bát cơm thơm dẻo mà ta ăn hàng ngày. Lời lẽ dung dị đằm thắm, bài ca dao như một luồng chảy trữ tình dạt dào mãi trong tâm hồn ta. Công việc của người nông dân vô cùng cực nhọc, vất vả: Cày đồng đang buổi ban trưa Mồ hôi thánh thót như mưa ruộng cày Ai ơi bưng bát cơm đầy Dẻo thơm một hạt, đắng cay muôn phần
Bình luận (0)
TN
13 tháng 7 2018 lúc 9:22
Ối xin lỗi, mình trả lời lộn chỗ =)
Bình luận (0)
CG
13 tháng 7 2018 lúc 9:23
:))) đùa
Bình luận (0)