Cho a,b là số tự nhiên và 11a+2b chia hết cho 12
Chứng minh rằng a+34b chia hết cho 12
1,cho(2a+7b )chia hết cho 3(với ạ ,b thuộc số tự nhiên)chứng minh rằng (4a+2b)chia hết cho 12
2 cho,b thuộc số tự nhiên và( 11a+2b)chia hết cho 12 chứng minh rằng(a+34b) chia hết cho 12
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
Cho a, b thuộc N và (11a + 2b) chia hết cho 12.
Chứng minh rằng : (a + 34b) chia hết cho 12.
Ta có : 11(a+34b) - 11a + 2b = 11a + 374b - 11a + 2b = 372b
=> 11a + 2b + 372b = 11(a+34b)
Mà 11a + 2b và 372b đều chia hết cho 12 nên 11(a+34b) cũng chia hết cho 12
Vì (11;12)=1 nên a + 34b chia hết cho 12
Ta có: a + 34b = (12a + 36b) - (11a + 2b)
mà 12a + 36b chia hết cho 12; 11a +2b chia hết cho 12
=> (12a + 36b) - (11a + 2b) chia hết cho 12 => a + 34b chia hết cho 12
Ta có : 11(a+34b) - 11a + 2b = 11a + 374b - 11a + 2b = 372b
=> 11a + 2b + 372b = 11(a+34b)
Mà 11a + 2b và 372b đều chia hết cho 12 nên 11(a+34b) cũng chia hết cho 12
Vì (11;12)=1 nên a + 34b chia hết cho 12
c ) Cho a ; b thuộc N và 11a + 2b chia hết cho 12. Chứng minh rằng : a + 34b chia hết cho 12
Vì 11a + 2b chai hết cho 12 (1)
=>11a+2b+a+34b
=(11a+a)+(2b+34b)
=12a + 36
vì 12a chai hết cho 12 và 36b chia hết cho 12 (2)
Từ (1) và (2) => a+34b chia hết cho 12
cho a,b c N và (11a +2b) chia hết cho 12. chứng minh rằng (a+34b) chia hết cho 12
Ta có: a + 34b = (12a + 36b) - (11a + 2b)
mà 12a + 36b chia hết cho 12; 11a +2b chia hết cho 12
=> (12a + 36b) - (11a + 2b) chia hết cho 12 => a + 34b chia hết cho 12
Cho a, b thuộc N và (11a+2b) chia hết 12. Chứng minh (a+34b) chia hết cho 12
C)GIẢI:(11a+2b) chia hết cho 12(gt)(1)
11a+2b+a+34b
=(11a+a)+(2b+34b)
=12a+36b
Vì 12a chia hết cho 12,36 chia hết cho 12
Suy ra:12a+36b chia hết choi 12 2)
Từ (1) và (2) suy ra (11a+2b) chia hết cho 12
nho tich
Cho a , b thuộc N và 11a+2b chia hết cho 12
Chứng minh: a+34b chia hết cho 12
Ta có : 11(a+34b) - 11a + 2b = 11a + 374b - 11a + 2b = 372b
=> 11a + 2b + 372b = 11(a+34b)
Mà 11a + 2b và 372b đều chia hết cho 12 nên 11(a+34b) cũng chia hết cho 12
Vì (11;12)=1 nên a + 34b chia hết cho 12
a) Khi chia a cho 18 số dư là 12. Hỏi a có chia hết cho 2 ; 3 ; 6 ; 9 không ? Vì sao ?
b ) Chứng minh rằng : ( 12a + 36b ) chia hết cho 12 ( với a ; b thuộc N )
c ) Cho a ; b thuộc N và 11a + 2b chia hết cho 12. Chứng minh rằng : a + 34b chia hết cho 12
Ai nhanh và đúng sẽ được 3 like nhé
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
A: Cho A;B thuộc N và (11a+2b) chia hết cho 12. Chứng minh (a +34b) chia hết cho 12
Cho a,b thuộc N và (11a + 2b) chia hết cho 12. CMR : ( a + 34b ) chia hết cho 12
Ta có : ( 11a + 2b ) + ( a + 34b ) = 12a + 36b
=> ( 12a + 36b ) - ( 11a + 2b ) = a + 34b
Mà 12a + 36b và 11a + 2b chia hết cho 12 nên a + 34b chia hết cho 12