Thu gọn tổng sau:
A= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính các tổng sau:
a) \({S_n} = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}}\);
b) \({S_n} = 9 + 99 + 999 + ... + \underbrace {99...9}_{n\,\,chu\,\,so\,\,9}\)
a) Tổng \({S_n}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên ta có:
\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{1\left( {1 - {{\left( {\frac{1}{3}} \right)}^n}} \right)}}{{1 - \frac{1}{3}}} = \frac{{1 - {{\left( {\frac{1}{3}} \right)}^n}}}{{\frac{2}{3}}} = \frac{3}{2}\left( {1 - \frac{1}{{{3^n}}}} \right) = \frac{3}{2} - \frac{1}{{{{2.3}^{n - 1}}}}\)
b) Ta có:
\(\begin{array}{l}{S_n} = 9 + 99 + 999 + ... + \underbrace {99...9}_{n\,\,chu\,\,so\,\,9} = \left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) + ... + \left( {\underbrace {100...0}_{n\,\,chu\,\,so\,\,0} - 1} \right)\\ = \left( {10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}} \right) - n\end{array}\)
Tổng \(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 10\) và công bội \(q = 10\) nên ta có:
\(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,s\^o \,\,0} = \frac{{10\left( {1 - {{10}^n}} \right)}}{{1 - 10}} = \frac{{10 - {{10}^{n + 1}}}}{{ - 9}} = \frac{{{{10}^{n + 1}} - 10}}{9}\)
Vậy \({S_n} = \frac{{{{10}^{n + 1}} - 10}}{9} - n = \frac{{{{10}^{n + 1}} - 10 - 9n}}{9}\)
Tính tổng sau:A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
2a=1+1/2+1/2^2+..............+1/2^2014+1/2^2015
2a-a=(1+1/2+1/2^2+.............+1/2^2014+1/2^2015)-(1/2+1/2^2+1/2^3+..........+1/2^2015+1/2^2016)
a=1-1/2^2016
a=2^2016-1/2^2016
vậy a =2^2016/2^2016
a. Rút gọn biểu thức \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(1+a^2\right)}}\)
b. Tính giá trị của tổng \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Cảm ơn mọi người nhiều
Lời giải:
\(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\sqrt{1+2.\frac{1}{a}+\frac{1}{a^2}+\frac{1}{(a+1)^2}-\frac{2}{a}}\)
\(=\sqrt{(1+\frac{1}{a})^2+\frac{1}{(a+1)^2}-\frac{2}{a}}=\sqrt{\frac{(a+1)^2}{a^2}+\frac{1}{(a+1)^2}-2.\frac{a+1}{a}.\frac{1}{a+1}}\)
\(=\sqrt{(\frac{a+1}{a}-\frac{1}{a+1})^2}=|\frac{a+1}{a}-\frac{1}{a+1}|=|1+\frac{1}{a}-\frac{1}{a+1}|\)
b)
Áp dụng công thức trên vào bài toán:
\(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
\(=|1+\frac{1}{1}-\frac{1}{2}|+|1+\frac{1}{2}-\frac{1}{3}|+....+|1+\frac{1}{99}-\frac{1}{100}|\)
\(=99+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100})\)
\(=99+1-\frac{1}{100}=100-\frac{1}{100}\)
Sai đề nha bn \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)
\(A=\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}\)\(=\sqrt{\frac{a^2\left(a+1\right)^2+2a^2+2a+1}{a^2\left(a+1\right)^2}}\)
\(=\sqrt{\frac{\left[a\left(a+1\right)^2\right]+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}\) \(=\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{a^2\left(a+1\right)^2}}\)
\(=\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng kết quả trên ta có :
\(B=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)
\(=99+1-\frac{1}{100}=\frac{9999}{100}\)
Rút gọn P biết P = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Rút gọn :
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+......+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)(nhân lượng liên hiệp nhé)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta có
\(\frac{1}{2\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Thu gọn tổng .. \(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}.\)
Rút gọn:
\(\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}...\frac{99^2}{100^2-1}\)
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
rút gọn
\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Dễ hiểu với cách xét bài toán phụ sau:
Với \(a+b+c=0\) và a,b,c khác 0
Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Thật vậy, ta CM như sau:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{0}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> BT được chứng minh
Áp dụng vào bài chính, ta được:
\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}=\sqrt{\left(\frac{1}{1}+\frac{1}{1}-\frac{1}{2}\right)^2}=1+1-\frac{1}{2}\)
Tương tự:
\(\sqrt{1^2+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)
...
\(\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}=1+\frac{1}{99}-\frac{1}{100}\)
Cộng vế lại ta được:
\(BT=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)
\(=100-\frac{1}{100}=99,99\)
Rút gọn mỗi biểu thức sau:
a) \(\frac{{{a^{\frac{7}{3}}} - {a^{\frac{1}{3}}}}}{{{a^{\frac{4}{3}}} - {a^{\frac{1}{3}}}}} - \frac{{{a^{\frac{5}{3}}} - {a^{ - \frac{1}{3}}}}}{{{a^{\frac{2}{3}}} + {a^{ - \frac{1}{3}}}}}\,\,\,(a > 0;a \ne 1)\)
b) \(\frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^4}}}{{\sqrt[4]{{\sqrt {{a^{12}}{b^6}} }}}}\,\,\,(a > 0;b > 0)\)