Những câu hỏi liên quan
HB
Xem chi tiết

A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 

A = 333300

Bình luận (0)
SA
Xem chi tiết
SA
16 tháng 11 2018 lúc 22:20

Các bạn giúp mk với. Mk đang cần gấp 😦

Bình luận (0)
H24
Xem chi tiết
H24
14 tháng 1 2018 lúc 13:38

cho bài kham khảo nè :

A=1.2+2.3+3.4+4.5+...+2017.2018
=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)
=> 3A=2017.2018.2019 => \(A=\frac{2017.2018.2019}{3};B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018
=> 2017.2018.2019<2018.2018.2018
=> A<B

thank nha

Bình luận (0)
TH
14 tháng 1 2018 lúc 13:39

A=1.2+2.3+3.4+...+2017.2018

3A=1.2.3+2.3.3+3.4.3+...+2017.2018.3

3A=1.2.3+2.3.(4−1)+3.4.(5−2)+...+2017.2018.(2019−2016)

3A=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2017.2018.2019−2016.2017.2018

⇒3A=2017.2018.2019

⇒A=2017.2018.20193

A=2017.2018.20193;B=201833=2018.2018.20183

A=2739315938;B=2739316611

⇒A<B

Bình luận (0)
H24
14 tháng 1 2018 lúc 13:40

\(A=1.2+2.3+3.4+4.5+............+2017.2018\)

\(3A = 1.2.3 + 2.3.4 +..............+ 2017.1018.3\)

\(3A = 1.2.3 + 2.3.(4-1) + .............. + 2017.2018.(2019-2016)\)

\(3A = 1.2.3 + 2.3.4 - 1.2.3 + ............. + 2017.2018.2019 - 2016.2017.2018\)

\(3A = 2017.2018.2019\)

\(A = \frac{2017.2018.2019}{3}\)

\(B =\frac {2018^3}{3}\)

đến đây ko bt lm

Bình luận (0)
TC
Xem chi tiết
KB
29 tháng 4 2018 lúc 7:05

\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\Rightarrow S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow S=\frac{1}{2}-\frac{1}{2018}\)

\(\Rightarrow S=\frac{1008}{2018}\)

bạn rút gọn nốt nha mk ko có máy tính

Bình luận (0)
NT
29 tháng 4 2018 lúc 5:55

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(S=\frac{1}{2}-\frac{1}{2018}\)

\(S=\frac{504}{1009}\)

HK TỐT NHÉ

Bình luận (0)
NL
29 tháng 4 2018 lúc 6:52

S = \(\frac{1}{2.3}\)\(\frac{1}{3.4}\) + \(\frac{1}{4.5}\)+ ..... + \(\frac{1}{2017.1018}\)

S = \(\frac{1}{2}\) - \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{5}\) + .....+ \(\frac{1}{2017}\)\(\frac{1}{2018}\)

S = \(\frac{1}{2}\) - \(\frac{1}{2018}\)

S = \(\frac{1008}{2018}\)

CHÚC BẠN HỌC GIỎI

Bình luận (0)
H24
Xem chi tiết
BH
23 tháng 11 2017 lúc 17:14

A=1.2+2.3+3.4+4.5+...+2017.2018

=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3

3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018

3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)

=> 3A=2017.2018.2019  => \(A=\frac{2017.2018.2019}{3}\);  \(B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018

=> 2017.2018.2019<2018.2018.2018

=> A<B

Bình luận (0)
IA
16 tháng 11 2018 lúc 12:17

Bui The Hao lam dung roi

mk cung dang can bai nay

Thanks vi da dang honganh

Bình luận (0)
SD
Xem chi tiết
NT
26 tháng 11 2017 lúc 9:31

Ta có : A=1.2+2.3+3.4+....+2015.2016

=>3A= 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 2017.2018.3

=>3A= 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5-2 ) + 4.5.( 6-3 ) + ... 2017 . 2018 . ( 2019 - 2016 )

=>3A=-1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 +.....+ 2017 . 2018 .2019 - 2017 . 2018 . 2016

=>A= 2017 . 2018 . 2019
 

Bình luận (0)
DN
Xem chi tiết
MP
28 tháng 8 2018 lúc 20:57

ta có : \(S=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2017.2018}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{2018}=\dfrac{504}{1009}\)

Bình luận (0)
H24
Xem chi tiết
HA
Xem chi tiết