CMR các phân số sau tối giản với mọi n thuộc N :n+1/3.n+4
CMR các phân số sau tối giản với mọi n thuộc N: 3.n+2/5.n+3
CMR các phân số sau tối giản với mọi n thuộc N:2.n+1/6.n+5
Gọi ƯCLN(2n+1; 6n+5) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
6n+5 chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 chia 2 dư 1
=> d = 1
=> \(\frac{2n+1}{6n+5}\)tối giản (Đpcm)
Chứng minh rằng: phân số n/n+1 (n thuộc Z) tối giản
b) CMR: Phân số 246913579 / 123456790 tối giản
c) CMR: các phân số 2m+3 / m+1 ; 4m+8/ 2m+3 là các phân số tối giản với mọi m thuộc Z
Giải chi tiết nha!
.CMR với mọi n thuộc N,các phân số sau là phân số tối giản:
b)4n+1/6n+1
Gọi ước chung lớn nhất (4n+1;6n+1)=d
->4n+1 chia hết cho d; 6n+1 chia hết cho d
Vì 4n+1 chia hết cho d
->3(4n+1) chia hết cho d
->12n+3 chia hết cho d
Vì 6n+1 chia hết cho d
->2(6n+1) chia hết cho d
->12n+2 chia hết cho d
Xét hiệu:12n+3-(12n+2) chia hết cho d
12n+3-12n-2 chia hết cho d
1 chia hết cho d
->d thuộc Ư(1)
Ư(1)={1;-1}
-> ước chung lớn nhất(4n+1;6n+1)={1;-1}
Vậy với mọi n thuộc N, phân số 4n+1/6n+1 là phân số tối giản.
(VÌ PHẤN SỐ TỐI GIẢN LUÔN CÓ ƯỚC CHUNG LỚN NHẤT LÀ 1 VÀ -1 BẠN Ạ)
CMR: Nếu phân số (5.m2+1) / 6 là số nguyên tố với mọi n thuộc N thì các phân số n/2 và n/3 tối giản
CMR các phân số sau lá phân số tối giản : n+4/n+3 ; 2n+3/4n=7 (n thuộc N)
Tìm n thuộc Z để A =n^3-2n^2+3/n-2
CMR phân số 8n+5/6n+4 tối giản với mọi n thuộc số nguyên
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Cmr phân số n+3/n+4 và n+1/2n+3 tối giản với mọi n
CM:
Để n + 3/n + 4 tối giản <=> ƯCLN(n + 3; n + 4) \(\in\){1; -1}
Gọi ƯCLN(n + 3;n + 4) = d
=> n + 3 \(⋮\)d ; n + 4 \(⋮\)d
=> (n + 3) - (n + 4) = -1 \(⋮\)d => d \(\in\){1; -1}
=> \(\frac{n+3}{n+4}\)là p/số tối giản \(\forall\)n
Để \(\frac{n+1}{2n+3}\) tối giản <=> ƯCLN(n + 1;2n + 3) \(\in\){1; -1}
Gọi d là ƯCLN(n + 1;2n + 3}
=> n + 1 \(⋮\)d => 2(n + 1) \(⋮\)d => 2n + 2 \(⋮\)d
=> 2n + 3 \(⋮\)d
=> (2n + 2) - (2n + 3) = -1 \(⋮\)d => d \(\in\){1; -1}
=> \(\frac{n+1}{2n+3}\)tối giản \(\forall\)n
a) Gọi ƯCLN(n+3,n+4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\)=> \(\left(n+4\right)-\left(m+3\right)⋮d\)=> \(n+4-n-3⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(n + 1,2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> \(\left(2n+3\right)-\left(2n+2\right)⋮d\)
=> \(2n+3-2n-2\)
=> \(1⋮d\)
=> \(d=1\)
=> \(\frac{n+1}{2n+3}\)là phân số tối giản