\(2\cdot f\left(x\right)+5\cdot\left(\frac{1}{x}\right)=x^2\)
\(2\cdot f\left(x\right)+5\cdot f\left(\frac{1}{x}\right)=x^2\)
Tính \(f\left(\frac{1}{2}\right)\)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
là \(\left(\frac{3^3}{6}-81\right)^3\)ạ
cho 2 đa thức
\(f\left(x\right)=3x^2-x+1\)
\(g\left(x\right)=x-1\)
a) tính giá trị của f(x)* g(x)
b)tìm x để \(f\left(x\right)\cdot g\left(x\right)+x^2\cdot\left[\left(1-3\cdot g\left(x\right)\right)\right]=\frac{5}{2}\)
Tìm x biết:
\(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}+\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}+\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}=\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
Theo đề ta có :
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\left(x+17\right)-\left(x+2\right)=x\)
\(\Rightarrow x=15\)
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
\(\left(\frac{1}{7}\cdot x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}\cdot x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}\cdot x+\frac{4}{3}\right)=0\)
( 1/7 . x - 2/7 ) . ( -1.5 . x + 3/5 ) . ( 1/ 3 . x + 4/3) + 0
<=> +) 1/7 . x - 2/7 = 0 +) (- 1 / 5) . x +3/5 = 0 +) 1/ 3 . x + 4/ 3 = 0
x = 2 x = 3 x = 4
Vậy x = 2 : x = 3 ; x=4
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
Tìm x:
a) \(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}\)+\(\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}\)+\(\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}\)= \(\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
Với x không thuộc (-2;-5;-10;-17)
b) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}\)+\(\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}\)+\(\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}\)-\(\frac{1}{20}\)= \(\frac{-3}{4}\)
Với x không thuộc (1;3;8;20)
c)\(\frac{x+1}{2019}\)+\(\frac{x+2}{2018}\)= \(\frac{x-3}{2017}\)\(\frac{x-4}{2016}\)
\(\frac{1}{\left(x+y\right)^2}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^{\text{4}}}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giúp vs cần gấp
Thiếu điều kiện xy = 1; x+y khác 0 nhá bn
Bài này tương tự câu 1 ở đây