Tìm hai số tự nhiên tổng bằng 432 và ước chung lớn nhất của chúng là 36
tìm 2 số tự nhiên có tổng là 432 mà ước chung lớn nhất của chúng bằng 36
Tìm hai số tự nhiên có tổng bằng 432 và ước chung lớn nhất bằng 36
Tìm hai số tự nhiên biết tích của chúng bằng 432 và ước chung lớn nhất bằng 6
Gọi hai số tự nhiên cần tìm là a, b. Thì (a,b) = 6 và a.b = 432. Ta đã biết (a,b).[a,b] = a.b. Vậy 6.[a,b] = 432, Do đó BCNN của hai số đó là: [a,b] = 432 : 6 = 72. Hai số cần tìm là a = 72 và b = 6. Một số là BCNN của hai số và số bé là UCLN của chúng.
Bài 1:Tìm hai số tự nhiên.Biết rằng tổng của chúng bằng 66,ước chung lớn nhất của chúng bằng 6,đồng thời có một số chia hết cho 5.
Bài 2:Tìm hai số tự nhiên ,biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12.
Bài 3:Tìm hai số tự nhiên,biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6.
Tìm 2 số tự nhiên có tổng =432 và có ước chung lớn nhất =36
Đặt a=36n, b=36n ,ƯCLN (m;n)=1 với m;n thuộc Z
Ta có a+b=432 nên 36n+36m= 432 =>36 .(m+n)=432
m+n=432:36
m+n=12
=> ta xét từng số từ 1 ->11 .VD
m=1=>n=11=>ƯCLN =1(chọn)=>a=36;b=396
Nếu ƯCLN khôgn bằng 1 thì loại
Duyệt đi
ƯCLN là 36, tính ra 2 số tự nhiên đó là bội của 36.
Tóm tắt bài toán :
? : 36 = ?(3)
?(2) : 36 = ?(4)
?(3) & ?(4) chia hết cho 36
Bây giờ tìm B(36);
B(36) là : 0;36;72;108;144;180;216;252;288;324;360;396;432...
Bắt cặp các số như sau có tổng là 432
36 vs 432
72 vs 396 x
108 vs 324 x
144 vs 288 x
252 vs 180 x
Mình đã tính tất cả các cặp ( viết vô dài lém - khỏi nhá ! )
=> kết quả là cặp đầu tiên - 36 vs 432.
Mik khổ công làm bài này hết 1 tiếng đó ! Nhớ cho mình để mình vui lòng nha ! Mình trả lời đầu mà ! Hi !
Cho mik sửa vì ghi lộn 36 và 396 nha ! Ghi lộn vì tính nhiều !
1: Tìm 2 số tự nhiên biết tổng của chúng là 144 và ước chung lớn nhất bằng 8 ?
2: Tìm 2 số tự nhiên biết tích của chúng là 1286 và ước chung lớn nhất bằng 9 ?
Tìm hai số tự nhiên biết tổng của chúng bằng 221 và ước chung lớn nhất của chúng bằng 13
\(\left\{{}\begin{matrix}a+b=221\\UCLN\left(a;b\right)=13\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=13m\\b=13n\\\left(m;n\right)=1\end{matrix}\right.\)
\(\Rightarrow13m+13n=221\)
\(\Rightarrow13\left(m+n\right)=221\)
\(\Rightarrow m+n=17\)
- Với \(\left\{{}\begin{matrix}m=16\\n=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=208\\b=13\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=14\\n=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=182\\b=39\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=12\\n=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=156\\b=65\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=10\\n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=130\\b=91\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=6\\n=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=78\\b=143\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(108;13\right);\left(182;39\right);\left(156:65\right);\left(130;91\right);\left(78;143\right)\right\}\)
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 144 và ước chung lớn nhất của chúng bằng 18.
Gọi hai số tự nhiên thỏa mãn đề bài là a và b thì theo bài ra ta có:
ƯCLN(a,b) =18 ⇒ \(\left\{{}\begin{matrix}a=18m\\b=18n\end{matrix}\right.\) (m.n) = 1 ; m,n \(\in\) N*
18m + 18n = 144 ⇒ m + n = 144: 18 = 8
Vì (m, n) = 1 ⇒ (m, n) = ( 1; 7); ( 3; 5)
th1: (m,n) = (1.7) ⇒ a = 18; b = 18 \(\times\) 7 = 126
th2: (m,n) = (3,5) ⇒ a = 18 \(\times\) 3 = 54; b = 18 \(\times\) 5 = 90
Kết luận hai cặp số tự nhiên thỏa mãn đề bài là:
18 và 126; 54 và 90
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 144 và ước chung lớn nhất của chúng bằng 12.