Tính
(1+1/2.4).(1+1/3.5).(1+1/4.6)...(1+1/375.377)
Tính
(1+1/2.4).(1+1/3.5)...(1+1/375.377)
tính C=1.3+2.4+3.5+4.6+.....+(n-1).(n+1)
1/(1.3)+1/(2.4)+1/(3.5)+1/(4.6)+...+1/(2021.2023)
\(P=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2021.2023}\)
Ta sẽ "tách" P làm 2 phần:
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)
Do đó \(P=A+B\)
Ta có \(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\right)\)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)\)
\(A=\dfrac{1011}{2023}\)
Mặt khác, \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2020.2022}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+\dfrac{8-6}{6.8}+...+\dfrac{2022-2020}{2020.2022}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)
\(B=\dfrac{505}{2022}\)
Từ đó \(P=A+B=\dfrac{1011}{2023}+\dfrac{505}{2022}=\dfrac{3065857}{4090506}\)
Giúp mình bài toán này với!
Tính tích:
S=(1+1/2.4)(1+1/3.5)(1+1/4.6).....(1+1/49.51)
Tính giá trị biểu thức:
1/ 1.3 + 1/2.4 + 1/3.5 + 1/4.6 + 1/5.7 + 1/6.8 + 1/7.9 + 1/8.10
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{8.10}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\)
\(2A=1-\frac{1}{10}\)
\(2A=\frac{9}{10}\)
\(A=\frac{9}{10}:2=\frac{9}{20}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{8.10}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}...+\frac{1}{8}-\frac{1}{10}\right)\)
( chắc chắn có số trái dấu ở phía sau, nên còn lại như sau)
=\(\frac{1}{2}\left(1-\frac{1}{10}\right)=\frac{1}{2}.\frac{9}{10}=\frac{9}{20}\)
C=(1+1/1.3)(1+1/2.4)(1+1/3.5)(1+1/4.6)....(1+1/98.100)
\(C=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.\dfrac{25}{4.6}....\dfrac{9801}{9800}=\)
\(=\dfrac{2^2.3^2.4^2.5^2.....99^2}{1.2.3^2.4^2.5^2....98^2.99.100}=\dfrac{2.99}{100}=\dfrac{198}{100}=1,98\)
1/1.3-1/2.4+1/3.5+1/4.6+...+1/97.99-1/98.100 = ?
1/1.3-1/2.4+1/3.5-1/4.6+...+1/97.99-1/98.100 = ?
=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100
=1-1/2-1/99-1/98=2327/4851
Cho A = 1/1.3 + 1/2.4 + 1/3.5 + 1/3.5 + 1/4.6 + ... + 1/98.100 .Chứng tỏ A < 3/4
Nhầm ,chỉ có một + 1/3.5 thôi các bạn nhé