Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TK
Xem chi tiết
PV
21 tháng 5 2017 lúc 8:25

x = \(\frac{2}{99}\)

Bình luận (0)
H24
21 tháng 5 2017 lúc 8:26

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)

\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)

\(\Rightarrow x=\frac{198}{99}=2\)

Vậy x = 2

Bình luận (0)
NH
21 tháng 5 2017 lúc 8:26

tách\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+......+\(\frac{2}{97.99}\)ra thành A

A=1/1-1/3+1/3-1/5+1/5-........+1/97-1/99

A=1-1/99=98/99

=>x=98/99-\(\frac{-100}{99}\)=2

k mình nha

Bình luận (0)
TV
Xem chi tiết
ND
24 tháng 4 2017 lúc 7:42

7x6 hay 7x9 hả bạn

Bình luận (0)
H24
24 tháng 4 2017 lúc 7:48

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\)\(\frac{2}{97.99}\)

\(A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.........+\frac{1}{97.99}\right)\)

\(A=2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=2\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Bình luận (0)
H24
24 tháng 4 2017 lúc 7:58

Ta có: 2/1.3 = 2/1 - 2/3    ;   2/3.5 = 2/3 - 2/5 ; bạn làm tương tự với các số kia.

Ta được : 2/1 - 2/3 + 2/3 - 2/5 + 2/5 - 2/7 + 2/7 - 2/6 + ....+ 2/97 - 2/99

A = 1 - 2/1 - 2/3 + 2/3 - 2/5 + 2/5 - 2/7 + 2/7 - 2/6 + ....+ 2/97 - 2/99

= 97/99 = > A = 97/99 : 2 = 97/99 x 1/2 = 97/198

Bình luận (0)
TN
Xem chi tiết
AM
17 tháng 6 2015 lúc 21:28

\(\frac{x-2}{3}+\frac{x-2}{3.5}+\frac{x-2}{5.7}+...+\frac{x-2}{97.99}=\frac{-49}{99}\)

<=>\(\left(x-2\right)\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=-\frac{49}{99}\)

<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=-\frac{49}{99}\)

<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)=-\frac{49}{99}\)

<=>\(\left(x-2\right)\cdot\frac{49}{99}=-\frac{49}{99}\)

<=>x-2=-1

<=>x=1

Bình luận (0)
TV
Xem chi tiết
NH
23 tháng 4 2017 lúc 21:28

A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+.........+1/97-1/99

=1-1/97=98/99

CHÕ KIA BN SAI ĐỀ MÌNH SỬA LUÔN CHO RỒI

Bình luận (0)
NS
23 tháng 4 2017 lúc 21:29

                              giải

A = \(\frac{1}{1.3}\)\(\frac{2}{3.5}\)\(\frac{2}{5.7}\)+....+\(\frac{2}{97.99}\)

     = \(\frac{1}{3}\)+ [ ( \(\frac{1}{3}\)\(\frac{1}{5}\)) +(\(\frac{1}{5}\)-\(\frac{1}{7}\)) +....+ (\(\frac{1}{97}\)-\(\frac{1}{99}\))]

     = \(\frac{1}{3}\)+ ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{97}\)-\(\frac{1}{99}\))

    = \(\frac{1}{3}\)+(\(\frac{1}{3}\)-\(\frac{1}{99}\))

   = \(\frac{1}{3}\)\(\frac{32}{99}\)

    = \(\frac{1}{99}\)

Vậy A = \(\frac{1}{99}\)

                       GIẢI THIK CÁCH LÀM 

HAI SỐ TẠO NÊN TÍCH Ở MẪU CÓ SỐ T1 KÉMSỐ T2 BẰNG 1 SỐ Ở TỬ THÌ PHÂN SỐ ĐÓ SẼ BẰNG HIỆU CỦA  2 PHÂN SỐ CÓ TỬ LAF1 , MẪU LÀ SỐ T1 TRỪ ĐI PHÂN SỐ CÓ TỬ LÀ 1 , MẪU LÀ SỐ T2 

*chú ý rằng chỉ áp dụng cho phân số có mẫu có thừa số t1 kém thừa số t2 bằng tử thôi nha!

mik sẽ lấy vd cho bạn xem 

  \(\frac{3}{5.8}\)=\(\frac{1}{5}\)-\(\frac{1}{8}\)

chúc bạn học giỏi

Bình luận (0)
NH
23 tháng 4 2017 lúc 21:33

MÌNH SẼ GIẢI THÍCH NHƯ SAU 

khi \(\frac{1}{3x5}\)=1/15

thì ta có cách khác :

ta thấy 3 và 5 có khoảng cách là 2 thì ta đặt khoảng cách ấy dưới 1 là 1/2

và ta sẽ tách là 1/3-1/5

=>ta có :1/2(1/3-1/5)=1/2(5/15-3/15)=1/2x2/15=1/15

Bình luận (0)
PD
Xem chi tiết
KN
Xem chi tiết
HQ
4 tháng 2 2017 lúc 10:39

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

Bình luận (1)
BT
4 tháng 2 2017 lúc 10:41

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Bình luận (3)
DB
4 tháng 5 2019 lúc 13:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{1}-\frac{1}{100}\)

=>\(\frac{99}{100}\)

B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

=>\(\frac{1}{1}-\frac{1}{99}\)

=>\(\frac{98}{99}\)

Bình luận (0)
NH
Xem chi tiết
U6
Xem chi tiết
TM
17 tháng 7 2016 lúc 10:01

=>\(T=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{98^2}{97.99}.\frac{99^2}{98.100}\)

=>\(T=\frac{2^2.3^2.4^2...98^2.99^2}{1.3.2.4.3.5...97.99.98.100}\)

Trông thì khó vậy nhưng thực ra ko khó đâu, bạn chỉ việc rút gọn từ trên tử xuống dưới mẫu là xong

=>\(T=\frac{2.99}{1.100}=\frac{99}{50}=1\frac{49}{50}\)

Bình luận (0)
GN
17 tháng 7 2016 lúc 10:04

\(=\frac{2.2}{1.3}.\frac{3.3}{3.5}....\frac{98.98}{97.99}.\frac{99.99}{98.100}\)

\(=\frac{2.3.4....98.99}{1.3.5...97.98}.\frac{2.3.4....98.99}{3.5.7...99.100}\)

rút gọn đi có :

\(\frac{99}{1}.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)

Bình luận (0)
DL
17 tháng 7 2016 lúc 10:05

\(\frac{2^2}{1.3}=\frac{1.3+1}{1.3}=1+\frac{1}{1.3}\) tương tự với các thừa số tiếp theo.

\(\Rightarrow T=98+\left(1-\frac{1}{100}\right):2=98+\frac{99}{100}=\frac{9899}{100}\)

Bình luận (0)
TD
Xem chi tiết
H24
25 tháng 2 2017 lúc 16:15

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

Bình luận (0)