Những câu hỏi liên quan
H24
Xem chi tiết
PH
Xem chi tiết
LH
Xem chi tiết
TU
Xem chi tiết
TU
13 tháng 2 2022 lúc 20:35

cho minh hỏi bài này với ah.

Bình luận (0)
PQ
Xem chi tiết
AN
24 tháng 8 2017 lúc 16:18

Đầu tiên chứng minh. Với mọi số n lẻ thì: \(n^5-n⋮240\)

Vì n lẻ nên ta chứng minh: \(A=\left(2k+1\right)^5-\left(2k+1\right)⋮240\)

Ta có:

\(\left(2k+1\right)^5-\left(2k+1\right)=8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)\)

Chứng minh nó chia hết cho 16.

Vì \(k\left(k+1\right)⋮2\)

\(8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)⋮16\)

Chứng minh nó chia hết cho 3:

Với \(k=3x\) thì \(A⋮3\)

Với \(k=3x+1\) thì \(2k+1=2\left(3x+1\right)+1=6x+3⋮3\)

Với \(k=3x+2\)thì \(k+1=3x+2+1=3x+3⋮3\)

\(\Rightarrow A⋮3\)

Chứng minh tương tự ta có được \(A⋮5\)

Vậy \(A⋮\left(16.3.5=240\right)\)

Quay lại bài toán ta có

\(a^5+b^5+c^5+d^5-a-b-c-d\)

\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)⋮240\)

Từ đây ta có ĐPCM

Bình luận (0)
H24
24 tháng 8 2017 lúc 15:11

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
PQ
24 tháng 8 2017 lúc 15:21

bạn làm bài nào vậy ?

Bình luận (0)
NV
Xem chi tiết
DP
Xem chi tiết
DT
19 tháng 10 2020 lúc 13:24

Ta có a^5-a luôn chia hết cho 6

suy ra a^5+...+d^5 -2016 chia hết cho 6

dpcm

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
SN
Xem chi tiết
NA
21 tháng 6 2015 lúc 21:26

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

Bình luận (0)
LP
21 tháng 6 2015 lúc 21:31

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

Bình luận (0)
ZZ
18 tháng 4 2019 lúc 13:20

Thử dùng đi-rích-lê+ modun=((

Đặt biểu thức cần chứng minh là P

Ta có:\(288=3^2\cdot2^5\)

Xét 4 số  \(a,b,c,d\) thì tồn tại 2 số có cùng số dư khi chia cho 3.

Giả sử \(a\equiv b\left(mod3\right)\Rightarrow a-b⋮3\left(1\right)\)

Xét 4 số  \(b,d,c,e\) thì tông tại 2 số có cùng số dư khi chia cho 3.

Giả sử \(c\equiv d\left(mod3\right)\Rightarrow c-d⋮3\left(2\right)\)

Từ (1);(2) suy ra \(P⋮9\left(3\right)\)

Trong 5 số đã cho thì chắc chắn có 3 số cùng tính chẵn lẻ.

Chúng ta cần xét các trường hợp có thể xảy ra.

4 số chẵn giả sử các số đó là:a,b,c,d.

Đặt \(a=2a_1;b=2b_1;c=2c_1;d=2d_1\) với \(a_1;b_1;c_1;d_1\in N\)

\(\Rightarrow P=\left(2a_1-2b_1\right)\left(2a_1-2c_1\right)\left(2a_1-2d_1\right)\left(2a_1-e\right)\left(2b_1-2c_1\right)\left(2b_1-2d_1\right)\left(2b_1-e\right)\left(2c_1-2d_1\right)\left(2c_1-e\right)\left(2d_1-e\right)\)

\(\Rightarrow P=2^5\cdot\left(a_1-b_1\right)\left(a_1-c_1\right)\left(a_1-d_1\right)\left(2a_1-e\right)\left(b_1-c_1\right)\left(b_1-d_1\right)\left(2b_1-e\right)\left(2c_1-2d_1\right)\left(2c_1-e\right)\left(2d_1-e\right)\)

Giả sử 3 số a,b,c chẵn còn d,e lẻ.

Đặt \(a=2a_2;b=2b_2;c=2c_2;d=2d_2+1;e=2e_2+1\)

\(\Rightarrow P=\left(2a_2-2b_2\right)\left(2a_2-2c_2\right)\left(2b_2-2c_2\right)Q\)

\(\Rightarrow P=16\left(a_2-b_2\right)\left(a_2-c_2\right)\left(b_2-c_2\right)\left(d_2-e_2\right)\cdot Q\)

Xét 3 số  \(a_2;b_2;c_2\) thì có 2 số chia cho 2 có cùng số dư.

Giả sử 2 số đó là \(a_2;b_2\)

\(\Rightarrow a_2-b_2⋮2\Rightarrow P⋮32\)

Giả sử có 3 số lẻ là  \(a,b,c\) và 2 số chẵn là \(d,e\)

Đặt \(a=a_3+1;b=b_3+1;c=c_3+1;d=2d_3;e=2e_3\)

Chứng minh tương tự như TH2 thì P chia hết cho 32.

Trong cả 3 trường hợp đều chia hết cho 32 nên P chia hết cho 32

Mà \(\left(32;9\right)=1\Rightarrow P⋮32\cdot9=288\left(đpcm\right)\)

Bình luận (0)