Tim hai số nguyên dương a và b biết: a + 2 chia hết cho b và b + 3 chia hết cho a.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm hai số nguyên dương a và b biết a+2 chia hết cho b và b+3 chia hết cho a?
Cho hai số a và b đều chia hết cho 3 và đều là số nguyên dương khác 0. Biết ab chia hết cho 3.
CMR: b chia hết cho số liền sau của b/a
Biết a và b là các số nguyên dương thỏa mãn (a2 - a.b+ b2) chia hết cho 9. Chứng minh a chia hết cho3 và b chia hết cho 3
Em phải học hằng đảng thức lớp 8
Anh giải cho :
ta có:
<=> \(a^2-2ab+b+ab⋮9\)
<=> \(\left(a-b\right)^2+ab⋮9\)
=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)
Xét \(\left(a-b\right)^2⋮9\)
<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)
Xét \(ab⋮9\)
<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)
Từ (1) và (2) => \(a⋮3\)
\(b⋮3\)
Answer:
Ta có:
\(a^2-ab+b^2⋮9⋮3\)
\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2⋮3\)
\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)
\(\Rightarrow\left(a+b\right)^2⋮9\)
Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)
\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)
Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3
Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)
Cho a và b là hai số nguyên dương và không chia hết cho nhau. Biết BCNN(a,b) = 630 và ƯCLN(a,b) = 18. Tìm hai số a và b
ta có: a . b = ƯCLN ( a , b ) ; BCNN ( a , b )
theo bài ra ta được:
a . b = 630 . 18
a . b = 11340
vì a . b = 11340 \(\Rightarrow\)a , b \(\in\)Ư ( 11340 ) = { 1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 14; 15; 18; 20; 21; 27; 28; 30; ...; 11340 }
TH1 : a = 1 thì b = 11340
TH2 : a = 2 thì b = 5670
TH3 : a = 3 thì b = 3780
TH4 : a = 4 thì b = 2835
TH5 : a = 5 thì b = 2268
...
TH cuối : a = 11340 thì b = 1
Vậy a = 1, b = 11340
a = 2 , b = 5670
....
a = 11340 , b = 1
a) Tìm các chữ số x;y để B = x183y chia 2; 5 và 9 đều dư 1
b) Cho a và ba hai số nguyên dương và không chia hết cho nhau biết BCNN(a,b) = 630 và UWCLN(a,b) = 18. Tìm hai số a và b
a)Để B chia hết cho 2;5
=>y =0
Thay vào ta được:x1830
Để B chia 9 dư 1 thì (x+1+8+3+0)chia 9 dư 1
=>(x+12)chia 9 dư 1
=>x=7
a) x=7;y=1
b) mik ko hỉu từ "ba hai"
a) Tìm các chữ số x;y để B =x183y chia cho 2;5;9 dư 1
b) Cho a và b là 2 số nguyên dương và ko chia hết cho nhau. Biet BCNN(a;b)= 630va UCLN(a;b)=18. Tim a; b
Theo đề bài ta có : UCLN(a,b)=18
=> a= 18m ; b = 18 n UCLN (m,n) = 1
ta có : a.b= BCNN(a,b).UCLN(a,b)=630.18=5670
=18m.18n=324.m.n=11340
=>m.n=11340:324=35
=>m,n thuộc U(35)={1,5,7,3}
lập bảng
m | n | a | b |
1 | 35 | 18 | 630 |
5 | 7 | 90 | 126 |
7 | 5 | 126 | 90 |
35 | 1 | 630 | 18 |
vậy các cặp a,b thỏa mãn là (18,630);(90;126);(126;90);(630;18)
a. để B chia hết cho2,5,9 dư 1 thì A có tận cùng là 1.
khi đó ta có:x1831 chia2,5,9 dư 1
suy ra (x+1+8+3+1) chia 9 dư 1
suy ra x=6 và y =1
Tìm các số nguyên dương a; b thoả mãn a+3 chia hết cho b và b+3 chia hết cho a
Lời giải:
Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.
Vì $b=at-3< a$
$\Rightarrow a(t-1)< 3$
$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$
Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$
$\Rightarrow t=1$. Khi đó: $b+3=a$
$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=4$ (tm)
Nếu $b=2$ thì $a=5$ (tm)
Nếu $b=3$ thì $a=6$ (tm)
Nếu $b=6$ thì $a=9$ (tm)
TH2: $a(t-1)=1\Rightarrow a=t-1=1$
$\Rightarrow a=1; t=2$.
$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)
TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$
$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)
Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$
Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.
cho a và b là 2 số nguyên dương . CMR: khi a2 + b2 chia hết cho 3 thì a và b đều chia hết cho 3
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu a^2 và b^2 đều chia 3 dư 1 => a^2+b^2 chia 3 dư 2
+, Nếu trong 2 số a^2 và b^2 có 1 số chia hết cho 3 và 1 số chia 3 dư 1 => a^2+b^2 chia 3 dư 1
=> để a^2+b^2 chia hết cho 3 thì a^2 và b^2 đều chia hết cho 3
Mà 3 là số nguyên tố nên a và b đều chia hết cho 3
Tk mk nha
Câu hỏi của Phương Đặng - Toán lớp 8 - Học toán với OnlineMath
Do m2; n2
là số chính phương nên m2; n2
chia 3 chỉ có thể dư 0 hoặc 1
+ Nếu m2; n2
chia 3 cùng dư 1 thì m2 + n2
chia 3 dư 2 (trái với đề bài)
+ Nếu trong 2 số m2; n2
có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2
chia 3 dư 1 (trái với đề bài)
=> m2; n2
cùng chia hết cho 3
Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)
:D
Tìm các số nguyên dương a,b thỏa mãn các điều kiện(a+2) chia hết cho b và (b+3) chia hết cho a ?
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??