tìm nghiệm nguyên dương của phương trình a^3 + b^3+ c^3= (a+b+c)^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm nghiệm nguyên dương của các phương trình sau (phương pháp loại trừ)
a) x^2 - 6xy + 13y^2 = 100
b) 1 + x + x^2 + x^3 = y^3
c) x^2 = y(y+1)(y+2)(y+3)
d) (x-2)^4 - x^4 = y^3
Tìm nghiệm nguyên dương của phương trình: y^2 - x(x+1)(x+2)(x+3) = 1
Kushito Kamigaya tham khảo nhé:
x² + (x+y)² = (x+9)²
<=> (x+y)² = (x+9)² - x²
<=> (x+y)² = 9(2x+9) (*)
Vì: 9 = 3² nên từ (*) ta thấy (2x+9) phải là số chính phương
=> 2x+9 = n² => 2x = (n-3)(n+3) => x = (n-3)(n+3)/2
n-3 và n+3 cùng chẳn hoặc cùng lẽ, nên x nguyên dương khi n là số lẽ lớn hơn 3
đặt n = 2k+1 với k > 1, (k nguyên)
có: 2x + 9 = (2k+1)² = 4k²+4k+1
=> x = 2k²+2k-4, thay x vào (*)
(x+y)² = 9(2k+1)² => x+y = 3(2k+1) = 6k+3 => y = 6k+3-x
=> y = 6k + 3 - 2k² - 2k + 4 = -2k² + 4k + 7 > 0
=> k² - 2k < 7/2 => (k-1)² < 7/2+1 = 9/2
=> k-1 < 3/√2 => k - 1 ≤ 2 => k ≤ 3
với đk k > 1 ở trên ta chỉ chọn được k = 2 hoặc k = 3
*k = 2 => x = 8, y = 7
*k = 3 => x = 20, y = 1
Cho phương trình bậc hai ẩn x:
\(x^2+m\text{x}+2m-4=0\)
a) Biết phương trình có một nghiệm x1=3. Hãy tính nghiệm còn lại x2 và m
b) Gọi x1 x2 là hai nghiệm phân biệt của phương trình. Tìm giá trị nguyên dương của m để biểu thức \(A=\frac{x_1x_2+3}{x_1+x_2}\)
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
C1: Phương trình x + 1/x-1= 2x-1/x-1 có bao nhiêu nghiệm A vô số nghiệm B 1 C 0 D 2 C2: nghiệm của phương trình 3x+3/x^2-1 +4/x-1 =3 là A -1 hoặc 10/3 B -1 C -10/3 D 1 hoặc -10/3
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho bất phương trình 3 - 2x < 15 - 5x và bất phương trình 3 - 2x < 7. Hãy :
a) Giải các bất phương trình đã cho và biểu diễn tập nghiệm của mỗi bất phương trình trên một trục số ( biểu diện hộ luôn đi)
b) Tìm các giá trị nguyên của x thỏa mãn đồng thời cả hai bất phương trình trên ?
Tìm số b và nghiệm thứ hai của các phương trình
a,x2-5x+b=0,Nếu có một nghiệm x=5
b,x2+bx-15=0 ,Nếu có 1 nghiệm x=3
a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)
\(\Rightarrow25-25+b=0\Rightarrow b=0\)
Lúc đó phương trình trở thành \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là 0
b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)
\(\Rightarrow3b-6=0\Leftrightarrow b=2\)
Lúc đó phương trình trở thành \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là -5
a) Vì \(x=5\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:
\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)
Thay \(b=0\)vào phương trình ta được:
\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)
b) Vì \(x=3\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:
\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)
\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)
Thay \(b=2\)vào phương trình ta được:
\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)