Cho S= \(\frac{2}{3^2}+\frac{2}{6^2}+\frac{2}{9^2}+.....+\frac{2}{6033^2}\)
so sánh với 0.5
S= \frac{2}{3^2}+\frac{2}{6^2}+\frac{2}{9^2}+.....+\frac{2}{6033^2}
1/tìm tất cả các số tự nhiên n trong khoảng từ 50 đến 100 để phân số \(K=\frac{3n+2}{7n+1}\)là phân số chưa tối giản
2/cho \(S=\frac{2}{3^2}+\frac{2}{6^2}+\frac{2}{9^2}+\frac{2}{12^2}+...+\frac{2}{6033^2}\)hãy so sanh S với 0,5
Cho S= 2/3^2+2/6^2+2/9^2+...+2/6033^2 Hãy so sánh S với 0,5
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
So sánh S với 1
Ta có
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..............
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)
ĐPcm
Giải:
\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\)
\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\)
\(\Rightarrow S< 1\)
Vậy S < 1.
Cho \(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
So sánh S với 10
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
Cho \(M=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\frac{6}{7}+\frac{7}{8}+\frac{8}{9}+\frac{9}{10}\)
So sánh M với 1
Ta có:
1 = \(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+............+\frac{1}{10}\)(10 phân số \(\frac{1}{10}\))
Mà \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};............;\frac{9}{10}>10\)
\(\Rightarrow M>1\)
Vậy M > 1
Ta có:
1/2=0,5
2/3>0,6
<=>1/2+2/3>1,1>1
<=>1/2+2/3+3/4+...+9/10>1
Vì 1 = \(\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(\Rightarrow\)M > 1 vì \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};...;\frac{9}{10}>\frac{1}{10}\)
\(\Rightarrow M>1\)
cho S = \(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+.....+\frac{2010}{2^{2009}}+\frac{2011}{2^{2010}}\)
SO SÁNH S VỚI 3
lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?
cho \(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
so sánh S với 2
S>2
nhân s với 2
lấy 2 S - S = 1+ 1/2 + 1/22015
:)) HD thui
Ta có: \(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}...+\frac{1}{2^{2014}}\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(2S-S=2-\frac{1}{2^{2014}}\)
Hay \(S=2-\frac{1}{2^{2014}}< 2\)
Suy ra: \(S< 2\)
_Học tốt_
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
\(\frac{1}{2}S=\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(\frac{1}{2}S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2015}}\)
\(\frac{1}{2}S-S=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2015}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(\frac{-1}{2}S=\frac{1}{2^{2015}}-1\)
\(S=\left(\frac{1}{2^{2015}}-1\right)\div\frac{-1}{2}\)
\(S=\frac{-1}{2^{2014}}+2< 2\)
\(\Rightarrow S< 2\)
\(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{n}{2^n}+...+\frac{2017}{2^{2017}}\)
so sánh tổng S với 2